ASDSO 2017

Enhanced Real-Time Rainfall and Flood Forecasting

Understanding the Storm and Implications for Dam Safety

Bill Kappel President & Chief Meteorologist Applied Weather Associates Monument CO

Joe Bellini, PE, PH, D.WRE, CFM Vice President & Principal Engineer Aterra Solutions Philadelphia PA

Presentation Outline

- Storm Background and Analysis
- Hydrologic Model
 - HEC-HMS (Lumped Unit Hydrograph)
 - 2D (Fully Distributed)
- Rainfall and Flood Forecasting
 - Rainfall QPF vs Actual
 - Flood Prediction QPF vs Actual
- Enhanced Approach to Real-Time Rainfall and Flood Forecasting

Acknowledge additional contributions JBA Consulting (JBA)

Storm Background and Analysis

- Heavy rainfall associated with Hurricane Joaquin
- October 1-5, 2015
- Concentrated over Piedmont and coast of South Carolina
- High moisture/stalled front over same area for several days
- Widespread region with more than 20 inches
- Several areas less than 1/1,000-yr AEP

Storm Background and Analysis AWA SPAS Analysis of Rainfall

Storm Background and Analysis AWA SPAS Analysis of Rainfall

ATER

SOLUTIONS

Storm Background and Analysis AWA Annual Exceedance Probability (AEP)

ASDSO 2017

Storm Background and Analysis NOAA Quantitative Precipitation Forecasts (QPF)

SOLUTIONS

ASDSO 2017

Storm Background and Analysis NOAA QPF – 1 Day (10/3 – 10/4)

SOLUTIONS

Hydrologic Model

- Hydrologic analysis
 conducted for selected
 watershed to compare
 watershed's response to
 predicted (QPF) and SPAS estimated actual
- Gills Creek (75 sq mi) selected as the subject watershed due to severity of flooding and dam failure events
- 23 regulated and several unregulated dams

Hydrologic Model

Hydrologic Model

- Two hydrologic scenarios were developed:
 - Post-event 1-hour gridded data developed by AWA
 - NOAA 3-Day Quantitative Precipitation Forecast (QPF) (6-hour QPFs for 72 hours)

Cary's Lake Dam (D 0026/HDR 03)

Rock Ford Lake Dam (D 0028/HDR 08)

Upper (North) Rock Ford Lake Dam (D 0029/HDR 09)

Hydrologic Model Fully Distributed 2D

- JFlow modeling software (JBA Consulting) was adapted for use as a fully-distributed 2D hydrologic model to evaluate the Gills Creek Watershed response during the October 2015 event.
- A fully-distributed 2D hydrologic modeling approach has advantages over conventional lumped and semi-distributed hydrologic models (e.g. HEC-HMS), particularly for transforming real-time rainfall to flood flow/ stage forecasting.
 - The fully distributed approach is physically-based, making it flexible in modeling hydrologic responses to rainfall events of various magnitudes, intensities, spatial distributions, and temporal distributions.

ASDSO 2017

Hydrologic Model Fully Distributed 2D

Rainfall and Flood Forecasting QPF vs Actual

As

ATER

SOLUTIONS

Real-Time Rainfall & Flood Forecasting Challenges

- Using QPF forecasts alone may lead to misleading information, particularly for small and medium size watersheds (not covered by the 6-hour duration)
- Limitations in QPF resolution and accuracy, especially more than 3-days in advance, for shorter durations, and extreme events.
- Conventional hydrologic models use "lumped" processes for transforming rainfall to runoff. Limited use for flood forecasting – only reliable for similar size, intensity, and distribution of calibration storms and at specific calibration points in the watersheds.

SOLUTIONS

 NOAA/NWS River Forecasts are provided at scattered locations and typically for larger watersheds.

- Flood Forecasting system under development:
 - Optimize forecasted rainfall, using real-time gage and NEXRAD data, through SPAS
 - Use of PQPF, ingested through SPAS, to run "what-if" scenarios as storm approaches
 - SPAS can produce gridded (1 sq. km.) rainfall forecasts every 5 minutes based on QPF forecasts

Preliminary 1-hour Precipitation in Inches Storm Precipitation Analysis System Real-Time (SPASRT) – Version 3.6.10 Dynamic ZR Gauge-adjusted Rader Precipitation [s=0.0103,b=0.1139] Total 1-hour Precipitation Ending at 09/07/2010 18:00 UTC – Created Tue Sep. 7 18:16:23 UTC 2010

- Diverse and flexible for transforming rainfall to runoff in near real-time, using higher resolution rainfall forecasts, for a:
 - Variety of sizes, intensities, and distributions of rainfall, and
 - Various flooding points of interest throughout the watershed
- Particularly useful for small and medium sized watersheds
- Enhance ability of emergency management and dam operator officials to make more informed and reliable flooding response and dam safety decisions.

SOLUTIONS

SOLUTIONS

ASDSO 2017

Open Discussion and Questions

Bill Kappel President & Chief Meteorologist Applied Weather Associates

www.appliedweatherassociates.com billkappel@appliedweatherassociates.com 719-964-3395

Joseph V. Bellini, PE, PH, D.WRE, CFM Vice President & Principal Water Resources Engineer Aterra Solutions

www.aterrasolutions.com

joe.bellini@aterrasolutions.com

610-772-7312

