The NEXRAD Revolution: Scientific Basis for Updating the HMR-49 Statistical Storm Intensities and PMPs

Bill Kappel, Senior Meteorologist/President Applied Weather Associates, Monument, CO www.appliedweatherassociates.com

2014 AIPG/AHS National Conference

September 15, 2014 Prescott, AZ

Reasons For Study

Deficient Dams: 29 state-regulated >\$75,000,000 estimated upgrade costs

State-of-practice data and understanding

Regulator/Owner confidence in results/applications

Cooperative Efforts

• Funding/Cooperating Partners

- Arizona Department of Water Resources
- Arizona Game & Fish Department
- Maricopa County FCD
- Navajo County FCD
- NRCS
- FEMA (NDSP State Assistance Grant)
- Working together all partners achieve desired results
- State/Users benefit at a reduced cost

• HMR 49-Published in 1977

- The oldest of the HMRs currently in use
- Based on outdated methods and techniques
 - Subsequently been improved
 - Better understanding of meteorology
 - Updated datasets
 - Improved spatial analysis
 - Methods and techniques updated in newer HMRs
- Major issues with HMR 49
 - Lack of storm data used to develop the PMP values
 - Only a handful of storms were investigated
 - None were analyzed using individual storm Depth-Area-Duration (DAD) values
 - Covers a widely varying region
 - Climatologically/Topographically

HMR 49 Domain

HMR 49 Boundary

How Did We Compute PMP?

Storm Based Approach

- Similar to HMR/WMO procedures
- Deterministic
- Maintain consistency with AWA PMP studies
 - Improvements in understanding
 - Expanded data base
 - Use of computer technologies
 - Use of NEXRAD weather radar
 - Better understanding of meteorology

Not Our First PMP Study

Updating PMP-What Did We Do

- Storm Search
 - Update the storm database
 - Identify the most extreme rainfall events
 - Throughout the state
 - Surrounding regions
 - Identify Storm Types
 - Local Convective
 - Remnant Tropical
 - General Frontal

Storm Data-The Foundation of It All

- Gridded rainfall foundation of all analyses
- Utilize the Storm Precipitation Analysis System (SPAS)
- Have analyzed hundreds of storms since 2002
 - Out of necessity
 - Follow basic procedures from NWS/USACE Storm Studies
- Provide valuable information on storm characteristics
 - Magnitude-Spatial-Temporal
- NEXRAD provides information to 5-minutes
 - Must correct NEXRAD data
 - Rain gauges ground truth
 - Dynamic adjustment of ZR equation

Updating PMP-Storm Analysis

- Storm Precipitation Analysis System (SPAS)
 - Depth-Area-Duration
 - Mass Curves
 - Storm Isohyetal
 - Hourly (5-minute rainfall) at 1/3rd square mile
 - 200 square meters with Dual-Pol
 - Dynamically adjusted radar and/or basemap for spatial interpolation

Hourly and daily station data extraction information: SPAS storm number: 1200 Begin: 01/19/2010 0000Z End: 01/22/2010 2359Z Domain: 36.5 -114.8 31.1 -109.0

Storm 1200 - January 19, 2010 (0000 UTC) - January 22, 2010 (0400 UTC) MAXIMUM AVERAGE DEPTH OF PRECIPITATION (INCHES)

	Duration (hours)										
Area (mi ²)	1	3	6	12	18	24	36	48	72	95	Total
0	1.15	2.33	3.8	6.03	8.09	9.98	10.6	10.99	13.66	14.93	14.93
1	1.1	2.26	3.71	5.81	7.92	9.72	10.39	10.7	13.43	14.57	14.57
10	1.04	2.09	3.64	5.75	7.56	9.1	9.94	10.27	12.95	14.52	14.52
25	0.96	2.01	3.54	5.56	7.31	8.7	9.62	9.89	12.53	13.99	13.99
50	0.88	1.97	3.39	5.38	7.02	8.46	9.33	9.51	12.16	13.44	13.44
100	0.85	1.89	3.31	5.09	6.84	8.05	8.98	9.15	11.67	12.82	12.82
150	0.82	1.83	3.21	4.86	6.57	7.95	8.79	8.9	11.34	12.44	12.44
200	0.8	1.79	3.14	4.72	6.53	7.7	8.56	8.73	11.18	12.18	12.18
300	0.73	1.72	3.02	4.58	6.26	7.57	8.36	8.52	10.89	11.79	11.79
400	0.72	1.66	2.94	4.48	6.04	7.36	8.14	8.31	10.6	11.51	11.51
500	0.71	1.61	2.87	4.4	5.76	7.1	7.97	8.12	10.29	11.28	11.28
1,000	0.62	1.34	2.34	4	5.53	6.37	7.05	7.51	8.75	10.48	10.48
2,000	0.52	1.29	2.28	3.6	4.95	5.93	6.64	6.64	8.51	9.78	9.78
5,000	0.43	1.08	1.93	2.92	4.4	5.1	5.78	5.78	7.49	8.6	8.60
10,000	0.39	0.9	1.59	2.77	3.78	4.39	5.04	5.21	6.57	7.58	7.58
20,000	0.28	0.71	1.29	2.32	2.88	3.53	4.28	4.59	5.51	6.37	6.37
40,231	0.19	0.53	1.02	1.74	2.35	2.77	3.23	3.43	4.36	4.74	4.74

Statewide Example PMP Results

Percent Differences from HMR 49 for 1-hr, 1 mi² PMP Depth

Based on values at ≈60,000 grid cells

Region	Min	Mean	Мах
STATEWIDE	-56%	-10%	+34%
High Desert/ Basin & Range	-56%	-42%	-23%
Sonoran Desert	-26%	+1%	+14%
Mohave Desert	-3 <mark>6</mark> %	+4%	+17%
Mogollon Rim	-46%	+1%	+21%
Colorado Plateau	-41%	-14%	+34%

- Immense amount of storm data
 - Ability to consider site-specific characteristics
- Higher confidence in results/data
- Significant cost savings
 - More accurate engineering/design
 - Infrastructure not overbuilt
- More storms need to be analyzed
- NEXRAD provides previously missing data
 - Must be used/adjusted appropriately

Bill Kappel, Applied Weather Associates 719-488-4311

billkappel@appliedweatherassociates.com

www.appliedweatherassociates.com

Sea Surface Temp, August +2-sigma

How Did We Compute PMP?

• PMP on a ~2.5mi² grid

- 64,103 grid cells-that's a lot of data!
- Move maximized storms to each grid
- Account for differences in moisture and elevation
- Calculate the Orographic Transposition Factor (OTF)
 - Uses Precip Frequency-NOAA Atlas 14
 - Difference between source and target location
- OTF-Quantifiable/Reproducible
 - •Replaces HMR SSM, K-Factor
 - Highly subjective
 - Not reproducible
- Results in total adjustment factor
- Apply to the DAD values

PMP Evaluation Tool (PET)

- Calculates gridded PMP for a user-defined drainage basin
- Custom Python-based scripted tool
 - Designed to be used within the ArcGIS environment
 - Flexible for future updates/enhancements
- Iterates through a storm database
 - Currently 93 maximized historical DAD tables
 - Adjusted to each grid cell
- Produces temporally distributed PMP output in both vector and raster GIS file formats for the basin spatial extent

Associates

Example PMP Results

72-hour tropical storm PMP values Provide basin, sub basin, or grid values/average

Associated with storm type temporal timing

Example PMP Results

72-hour tropical storm PMP

Source storm ID by SPAS storm number

Allows for back calculation and verification

Elevations Across Arizona, 1,000 Foot Interval

