Challenges in Determining the Probable Maximum Precipitation (PMP)

Ed Tomlinson, PhD Applied Weather Associates, LLC Monument, Colorado

Extreme Storms Working Group

Washington, DC October 15, 2012

Challenges in Determining the Probable Maximum Precipitation (PMP)

- Applied Weather Associates Overview
- Definition of PMP
- HMR methodology overview
 - Procedures used Current HMRs
 - HMR issues
 - Storm maximization
 - Storm transposition
- Technical challenges
 - Extreme storm rainfall analyses
 - Orographic evaluations
- Site-specific/Statewide/Regional PMP studies
- Updates to the HMRs

Applied Weather Associates, LLP

Established 1996 Ed Tomlinson, PhD President and Chief Meteorologist Bill Kappel Vice-President and Senior Meteorologist Seven meteorologists and a GIS specialist

Applied Weather Associates, LLC
PO Box 680
Monument, Colorado 80132-0680
719/488-9117
E-mail: edtomlinson@appliedweatherassociates.com billkappel@appliedweatherassociates.com
Web-site: www.appliedweatherassociates.com

Applied Weather Associates, Personnel

- Chief Meteorologist
 - Ed Tomlinson, PhD President
- Senior Meteorologists
 - Bill Kappel Vice President
 - Tye Parzybok Metstat, Inc
 - Bob Wright
- Hydrometeorologist
 - Doug Hultstrand
- Staff Meteorologists
 - Patrice Sutter
 - Steve Lovisone
- GIS Specialist
 - Geoff Muhlestein

Probable Maximum Precipitation

Definition:

The <u>theoretically greatest depth</u> of precipitation for a given duration that is <u>physically possible</u> over a given storm area at a particular <u>geographic location</u> at a <u>certain time of year</u> (HMR 59, 1999)

Probable Maximum Precipitation

Definition

V.

- i. Theoretical values
- ii. Maximum depth of precipitation
- iii. Physically possible
- iv. Geographic region
 - **Certain time of year**

Current HMRs

Probable Maximum Precipitation

- Evolution of PMP determination procedures
- Differences in procedures used in current HMRs HMR 49 HMR 51 HMR 55A HMR 55A HMR 57 HMR 59

HMR 49

- Oldest of the current HMRs
- Same methods used in HMR 33 and HMR 36
 - These have been replaced by HMR 57 and HMR 59
- Methods no longer used in any of the other HMR
 - Orographic methods not used in subsequent HMRs
 - No storm Depth-Area-Duration analyses
 - Ratios are used from point rainfall amounts to determine other rainfall for area sizes and durations amounts
 - Very little actual storm data analyzed

HMR 51

- No orographic procedures used
 - stippled regions
- Maximum dew point climatology not representative of moisture feeding storms
- Implicit influence of storms throughout large areas of domain not appropriate
 - Smethport, PA
- Improper storm analyses
 - Smethport (1942), Yankeetown (1950), Alta Pass (1916)
- Storm database outdated
 - Most recent general storm: Hurricane Agnes 1972
 - Most recent Midwest thunderstorm complex: Ritter, Iowa 1953

Probable Maximum Precipitation

HMR 51

Figure 20.--All-season PMP (in.) for 24 hr 10 mi^2 (26 km^2).

HMR 55A

- Storm Separation Method (SSM) introduced
 - "Highly complex involving a number of subjective decisions"
 - Use of actual storm rainfall analysis data is not clear
- New concept of half precipitable water adjustment made in HMR 55
 - This new concept resulted in very large local storm PMP values at high elevations
 - HMR 55A was published resulting in considerable decreases in local storm PMP and general storm PMP at some locations

HMR 57

- No working papers are available
- Storm Separation Method used
 - Unclear how storm rainfall spatial and temporal data were used
- Use of controlling storms questionable
 Gibson Dam, Seymour Falls
- Sea Surface Temperatures used to determine maximization and transposition factors
- Many storm maximization factors can not be replicated, numerous errors/inconsistencies

HMR 59

- No working papers are available
- Storm Separation Method used
- Use of storm rainfall data to derive PMP values is not presented
- Results cannot be reproduced
- Many errors/inconsistencies in storm maximization/transposition values found

Challenges in Determining the Probable Maximum Precipitation (PMP)

HMR issues

– Storm maximization

- HYSPLIT use for determining storm moisture inflow vectors
- Storm representative dew point temperature (T_d)
- Dew point temperature vs Sea Surface Temperature (SST)
- Average T_d vs persisting T_d
- Variable durations (6-, 12-, and 24-hour) vs 12-hour
- Storm elevation vs 1000mb (sea level)
- Updated maximum T_d and SST climatologies
 - Maximum T_d
 - » Maximum observed
 - » Return frequency (e.g. 100-year)
 - Maximum SST
 - (2 Sigma SST, Mean SST + 2 standard deviations)
- Documentation

NOAA HYSPLIT MODEL Backward trajectories ending at 1200 UTC 28 Jun 07 CDC1 Meteorological Data

Use of the HYSPLIT air parcel trajectory model

Examples of Site-Specific PMP Study Findings

- Storm Maximization, Dew point Analyses
 - 12-hour vs 6-hour persisting dew points
 - 12-hour persisting vs 6-hour average
- Observed dew point values
- Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
- Td 68 67 69 69 72 75 75 74 75 73 70 69 68 65 66 65 65 65 67 66

! Rainfall Event !

• 12-hour persisting: <u>65</u>

•

- 6-hour persisting: 72
- 6-hour average: 74

Updated Maximum Dew Point Climatology

Updated 2 Sigma SST Map

Updated Dew Point Climatologies

Storm Precipitation Analysis System (SPAS)

 A comprehensive, state-of-the-science precipitation analysis system
 Produces high resolution, gridded precipitation fields

Developed in 2002
Semi-automated GIS-based software program
Spatial interpolation between rain gauges by radar data and "climatologically-aided" methodology

Generates a plethora of output

High resolution hourly precipitation grids

Depth-Area-Duration (DAD) plots

More than 200 storms have been analyzed

New Storms Analyzed for PMP Development

New Storms Analyzed for PMP Development

SPAS Storm Locations Arizona Statewide PMP Project

SPAS Storm Analysis vs **NWS Storm** Analysis Westfield 1955 61-70 Observing sites 7.1 - 8.0 Туре Dall 8.1 - 9.0 Hourly . 9.1 - 10.0 **Hurricane Diane** Daily supplemental 10.1-11.0 Precipitation 11.1-12.0 hches 12.1 - 13.0 00-10 13.1-140 1.1-2.0 14.1 - 15.0 21-30 15 1 - 160 3.1 - 4.0 16.1 - 17.0 4.1 - 5.0 17.1-18.0 Townshend 5.1-6.0 18.1 - 19.0 Surty Min 2.5 Mac Dowell 19.1-20.0 Pscenbers ste 70°W 77°W Ludson MASSACHUSETTS Shelburne 4.7 Fails TWP Jame 3, 2003 Sterling 3NW 120 13.8 authin Akmighty le Ba 431154 17.60 162 Walpole Pur 89 5 60 Mendon 13.8 HS HEINIG R 1 10.4 COMNECTICUT 97 State Form 1,51 103 Taunton 2 Norfelk 2W .* autoritient 90 8,1 stores 8.5 Provid 6.3 Manafield Hollo Tortingto artford Broinard New Bedfor Media Kes ahkeepsid IN White Pag inastor 8.3 Candlewood, at 0-

New Haven AP

Usi

Total Storm Precipitation Westfield, MA Storm Center August 15-23, 1955

73°W

Block Island

57

1.25 gr

Storm Precipitation Analysis System (SPAS)

- SPAS uses the same basic principles used by the USACE and National
 Weather Service/Bureau thereby <u>achieving</u>
 <u>consistency</u> among the storm analyses
- The DAD results compared favorably to previously analyzed storms, including:
 - Westfield, MA, storm of August 17-20, 1955
- Results
 - Improved spatial, timing, etc

Generally within +/- 5% !

SPAS							
Sq-Miles	6-hour	12-hour	24-hour	36-hour	48-hour	60-hour	Total
10	7.96	11.48	16.40	19.10	19.11	19.47	19.70
100	7.22	10.72	15.20	17.77	17.76	18.23	18.47
200	6.99	10.27	14.28	16.91	16.84	17.39	17.54
1000	5.97	9.06	12.55	14.97	15.08	15.40	15.95
5000	4.14	6.45	9.25	11.70	12.02	12.35	13.05
10000	3.23	5.46	7.63	9.60	9.91	10.26	10.86
20000	2.24	4.03	5.91	7.66	7.97	8.22	8.77
Weather E	Bureau						
Sq-Miles	6-hour	12-hour	24-hour	36-hour	48-hour	60-hour	Total
10	7.80	11.10	16.40	18.90	19.40	19.40	19.40
100	7.60	10.50	14.60	18.10	18.80	19.00	19.00
200	7.40	10.20	14.20	17.60	18.20	18.40	18.40
1000	6.20	9.20	12.40	15.90	16.20	16.40	16.40
5000	4.00	6.30	9.50	12.10	12.60	13.00	13.00
10000	3.10	5.00	8.00	10.00	10.60	10.80	10.80
20000	2.10	3.60	6.30	7.90	8.30	8.50	8.50
							h
Percent D	ifference						l l
Sq-Miles	6-hour	12-hour	24-hour	36-hour	48-hour	60-hour	Total
10	2.1%	3.4%	0.0%	1.1%	-1.5%	0.4%	1.5%
100	-5.0%	2.1%	4.1%	-1.8%	-5.5%	-4.1%	-2.8%
200	-5.5%	0.7%	0.6%	-3.9%	-7.5%	-5.5%	-4.7%
1000	-3.7%	-1.5%	1.2%	-5.8%	-6.9%	-6.1%	-2.7%
5000	3.5%	2.4%	-2.6%	-3.3%	-4.6%	-5.0%	0.4%
10000	4.2%	9.2%	-4.6%	-4.0%	-6.5%	-5.0%	0.6%
20000	6.7%	11.9%	-6.2%	-3.0%	-4.0%	-3.3%	3.2%

NEXRAD Radar Reflectivity (Z)

Advanced algorithms for mosaicing and QCing reflectivity (Z) data from multiple radar sites
 Spatial: ~ 1km x ~1 km

Temporal: Every 5-minutes (10-mins Canada)

ZR Relationship

Reflectivity-rainfall (ZR) relationships are computed using a weighted best-fit exponential function and thresholds in order to compute rainfall rates from radar reflectivity

 Instead of adopting a standard (e.g. 300^1.4)
 ZR relationship, SPASRT computes and applies a
 ZR relationship <u>each hour</u>

Final 1-hour Precipitation in Inches Storm Precipitation Analysis System Real-Time (SPASRT) – Version 3.5.0 Dynamic ZR Gauge-adjusted Radar Precipitation [a=0.0053,b=1.2919] Total 1-hour Precipitation Ending at 04/02/2010 18:00 UTC – Created Sat Apr 3 18:17:27 UTC 2010

Gauge-Adjusted Algorithms (a.k.a. bias correction)

1.5

Observed (in)

SPAS Output

Storm-centeredDAD table and plot

Storm 1048 - Hokah, MN August 18 - August 21, 2007

MAXIMUM AVERAGE DEPTH OF PRECIPITATION (INCHES)

	Duration (hours)									
Area (mi ²)	1	3	6	12	18	24	36	48	72	Total
0.24	2.45	4.77	7.85	11.89	14.88	17.31	17.55	18.19	18.26	18.26
1	2.12	4.53	7.56	11.64	14.59	17.05	17.31	17.95	18.02	18.02
10	2.12	4.53	7.49	11.10	13.88	15.96	16.31	17.03	17.15	17.17
25	2.12	4.53	6.92	10.42	12.86	14.89	15.34	16.23	16.45	16.46
50	2.11	4.40	6.64	9.65	12.13	14.05	14.46	15.49	15.79	15.79
100	2.09	4.10	6.33	9.37	11.52	13.27	13.93	14.76	15.14	15.14
200	2.03	3.79	6.00	8.87	10.96	12.62	13.37	14.22	14.52	14.52
300	1.95	3.61	5.74	8.55	10.64	12.06	12.99	13.74	14.04	14.04
500	1.79	3.35	5.47	8.13	10.11	11.60	12.27	13.01	13.29	13.30
1,000	1.53	2.99	4.95	7.33	9.17	10.51	11.13	11.84	12.07	12.07
2,000	0.95	2.55	4.36	6.18	8.09	9.30	9.85	10.54	10.75	10.76
5,000	0.87	2.02	3.45	5.19	6.53	7.61	8.18	8.79	8.96	8.98
10,000	0.63	1.54	2.69	4.02	5.39	6.09	6.78	7.31	7.53	7.55
20,000	0.41	0.95	1.84	3.02	3.97	4.53	5.13	5.63	5.87	5.90

SPAS vs NWS MPE

Basin Average Comparison										
	Pre	ecipiation (in)							
	1hr Max.	1hr Min.	1hr Avg.	Total						
PAS	1.32	0.00	0.30	12.39						
tage IV	0.78	0.00	0.17	7.25						
6 Diff	-41%	-	-41%	-41%						

SPAS vs NWS MPE

Dynamic ZR Relationship

RELATIONSHIP

Marshall-Palmer

(z=200R^{1.6}

Table 1. Z-R RECOMMENDATIONS

Optimum for:

General stratiform precipitation

Also recommended for:

Key Tasks for Site-Specific PMP Studies

- Identify extreme storm types
 - Evaluate the use of HMR procedures for each storm type
- Identify unique topography
 - Moisture depletion by upwind barriers
 - Precipitation enhancement/decrease
 - Effects on storm center location
- Review HMR procedures used for the basin location
 Identify inconsistent assumptions

Site-Specific/Regional/Statewide PMP Studies

- Storm search
- Short list of significant storms
- Storm rainfall analyses
 - (Depth-Area-Duration)
 - Rainfall timing (mass curves)
- Storm in-place maximization
- Storm transposition
 - Moisture transposition
 - Elevation moisture adjustment
 - Orographic transposition
- Depth-Area envelopment
- Depth-Duration envelopment

Updated Storm Search Locations

Storm Search Domains Scoggins Dam 2009 Lewis Nebraska River 2011 Brassua Wyoming 2009 Ohio 2011 Numerous 2011 2011 Colorado **PMP Studies** Woodcliff Lake 2002 2004 TRWD Blenheim-Gilboa - 2006 2011 Arizona Tuxedo Lake - 2008 2008 and PG & E and Lake DeForest - 2007 Piru Creek 2009

Method for Computing PMP Values

<u>Enveloping</u>

- For any location in a region
 - The maximized and transpositioned Depth-Area (D-A) rainfall
 - is plotted for each storm for each duration
 - For each duration, an envelop curve is constructed that envelopes the rainfall values at each area size
- The D-A envelop curve procedure insures continuity in space
 - i.e. The rainfall at each area size has continuity with smaller and larger area sizes
- The same procedure is followed for the Depth-Duration (D-D) rainfall plots
- The D-D envelop curve procedure insures continuity in time
 - i.e. The rainfall at each duration has continuity with shorter and longer durations

Area Enveloping

Storm Area in Square Miles

Depth-Duration Chart of Enveloped Storm Data Grid Point 13

Storm Duration in Hours

torm Name:	m Name: SPAS 1030-David City, NE				Storm Adjustment for Child Daint 12								
torm Date: WA Analysis Data:	Date: 24-Jun-1963 Analysis Date: 10/10/2012					Storm Adjustment for Grid Point 13							
mooral Transpositio	n Doto	9_I.ul											
inporar Transpositio	ii Date	J-Jui Lot	Long			Moisture I	nflow Directi	on:	SE@ 175	milee			
		11 22 N	1.011g			Dasia Flam	mow Direcu	1011.	3E@173	faat			
orm center location		41.23 N	97.07 W			Dasin Lieva	uion		1 700	leet			
orm Rep dew point lo	cation	39.41 N	94.83 W			Storm Elev	ation		1,700	feet			
ansposition dewpoint	location	39.20 N	81.26 W			Storm Dur	ation		6	hours			
isin location		40.50 N	83.80 W										
201		A	7 2 4 5	24			1 1 4			2.45			
The storm re	presentative	dew point is	73.5 F	with tota	I precipitable	water above	e sea level of			2.67	inches.		
The transposition	ad maximum	daw point is	01.5 F	with tota	l precipitable	water above	sea level of			3.84	inches.		
The transposition	n place storr	n elevation is	1 700	with tota	which subtracts 0 400 inches of precipitable			water at	73.5 F	inches.			
The i	n-place storr	n elevation is	1,700	whi	ich subtracts	0.500 inches of precipitable		e water at	815F				
The transp	osition basir	elevation at	700	which subtracts		0.190 inches of precipitable		e water at	78.0 F				
The inflow barrier	/basin elevat	tion height is	700	whi	ich subtracts	0.190	inches o	f precipitabl	e water at	78.0 F			
								r ··r ···					
Th	e in-place st	orm maximizat	ion factor is	1.47	1	Notes: In 1	place of 1.56	adjusted to	1.50 based o	n HMR 51			
The trai	nsposition/e	levation to ba	sin factor is	0.93		and 55A guidance. DAD values taken from SPAS 1030.							
	The b	arrier adjustm	ent factor is	1.00									
					1	1							
	The	total adjustm	ent factor is	1.37									
Observed S	torm Depth-	Area-Duratio	n										
		1 Hours	6 Hours	12 Hours	18 Hours	24 Hours	30 Hours	36 Hours	48 Hours	60 Hours	72 Hours		
	1 sq miles	3.9	14.1	15.6	15.9	16.0	-	16.0	16.0	-	16.0		
	10 sq miles	3.7	13.3	14.6	15.0	15.2	-	15.2	15.2	-	15.2		
	100 sq miles	3.0	11.2	12.7	13.1	13.2	-	13.2	13.2	-	13.2		
	200 sq miles	2.8	10.5	12.0	12.4	12.5	-	12.5	12.5	-	12.5		
	500 sq miles	2.4	9.0	10.4	10.8	10.8	-	10.8	10.9	-	10.9		
1	000 sq miles	2.0	7.8	9.0	9.4	9.5	-	9.5	9.5	-	9.5		
5	000 sq miles	0.9	4.2	5.9	6.6	6.8	-	6.9	6.9	-	6.9		
10	000 sq miles	0.6	2.6	4.1	4.6	4.9	-	4.9	5.0	-	5.0		
20	000 sq miles	0.4	1.5	2.4	2.9	3.1	-	3.1	3.1	-	3.1		
										_			
Adjusted S	torm Depth-	Area-Duratio	n (II)	12.11	10 11	24.11.	20.11	2611	40.11.	(0.11.	72.11		
	1	I Hours	6 Hours	12 Hours	18 Hours	24 Hours	30 Hours	36 Hours	48 Hours	60 Hours	72 Hours		
	10 og miles	5.0	19.5	21.4	21.0	21.9	-	21.9	21.9	-	21.9		
	10 sq miles	3.0	15.4	17.4	18.0	18.1	-	18.1	18.1	-	18.1		
	200 sq miles	3.8	14.3	16.4	17.0	17.1	-	17.1	17.1		17.1		
	500 sq miles	3.2	12.3	14.3	14.8	14.8	-	14.8	14.9	-	14.9		
1	000 sq miles	2.7	10.6	12.3	12.9	12.9	-	13.0	13.0	-	13.0		
5	000 sq miles	1.2	5.7	8.1	9.1	9.3	-	9.4	9.4	-	9.4		
10	000 sq miles	0.8	3.6	5.6	6.3	6.7	-	6.8	6.8	-	6.8		
20	000 sq miles	0.5	2.1	3.3	3.9	4.3	-	4.3	4.3	-	4.3		
Storm or St	orm Center N	Jame		SPAS 1030-	David City, N	Æ							
Storm Date	(s)			24-Jun-1963									
Storm Type	;			MCC									
Storm Loca	tion			41.23 N	97.07 W								
Storm Cent	er Elevation			1,700									
Precipitatio	n Total & Du	uration		16.50 Inches	24-hours US	ACE Bucket	Survey Data	1		<u> </u>	1		
a. ~				72 C F	6								
Storm Repr	esentative D	ewpoint	41. m	/3.5 F	04.02.117								
Storm Repr	esentative D	ewpoint Loca	uon	37.41 N	94.83 W						-		
Maiatura I	wpoint flow Vooter			01.3 Г SE @ 175							1		
In place M	now vector	actor		3£ (u) 173 1 47									
m-place Ma	anninzation F	ac101		1.47/									
Temporal T	ransposition	(Date)		9-Iul							1		
Transnositi	on Dewnoin	t Location		39.20 N	81 26 W					-	1		
Transpositi	ion Maximun	n Dewpoint		78.0 F	51.20 11								
Transpositi	on Adjustm	ent Factor		0.93							1		
Average Ba	sin Elevatio	n		700							1		
Highest Ele	vation in Ba	sin											
Inflow Barr	ier Height			700									
Elevation A	dimentary f	a a t a a		1.00							1		

Storm Adjustment Spreadsheet

Probable Maximum Precipitation

- Types of PMP studies:
 - Generalized (Hydrometeorological Reports)
 - Regional (EPRI Michigan/Wisconsin 1993)
 - Statewide (Nebraska 2008, Arizona, Ohio, Wyoming)
 - -Site-Specific

Completed and In-Progress PMP Studies

Nebraska Statewide PMP Study Results

Ohio Statewide PMP Study Results

Nebraska Statewide PMP Study Results VS **HMR 51**

Nebraska Statewide PMP Study **Results** VS **HMR 51**

Results from Selected Site-Specific PMP Studies

- Wisconsin/Michigan
 - Accepted by FERC
- Great Miami River, Ohio
 - Accepted by Ohio State Engineer
- Catawba-Wateree Rivers, Carolinas
 - Not accepted by FERC
- Williams Fork River, Colorado
 - Accepted by FERC & Colorado State Engineer

Results from Selected Site-Specific PMP Studies

- Muddy Creek, Colorado
 - Accepted by Colorado State Engineer
- Elkhead Creek, Colorado
 - Accepted by Colorado State Engineer
- Broomfield Reservoir, Colorado
 - Accepted by Colorado State Engineer
- Chelan Reservoir, Washington
 - Study suspended
- Upper and Middle Dams, Maine
 - Accepted by the FERC
- Great Sacandaga Lake, New York
 - Accepted by the FERC

Results from Selected Site-Specific PMP Studies

- Nebraska Statewide
 - Accepted by Nebraska Dam Safety office
 - Accepted by the FERC
- Blenheim-Gilboa Reservoir, New York
 - Accepted by the FERC
- Tuxedo Lake
 - Accepted by New York Dam Safety office
- Woodcliff Lake
 - Accepted by New Jersey Dam Safety office
- Brassua Dam drainage basin, Maine
 - FERC acceptance pending
- Lewis River drainage basin, Washington
 - FERC acceptance pending

Applied Weather Associates Completed PMP Studies

- Site-specific PMP values are used instead of HMR values to compute the Probable Maximum Flood
- PMP studies have produced reductions in the PMP values from individual drainage basins and statewide regions
- AWA site-specific and statewide PMP studies have been accepted by appropriate regulators
 - Federal Energy Regulatory Commission (FERC)
 - State dam safety regulators

Updates to the HMRs

- Updates to the HMRs
 - Need consistent analysis procedures across the US
 - Need comprehensive documentation and working paper archives
 - Leverage off of site-specific/statewide/regional PMP studies
 - Can be developed by region
 - Much has been completed for the Midwest
 - » Storm search
 - » Storm rainfall analyses
 - » Maximum T_d and 2-sigma SST climatologies completed
 - » In-place storm maximization complete
 - Coordinated development
 - Federal agencies
 - » FERC
 - » USBR
 - » COE
 - » NRCS
 - » NRC
 - » NRCS
 - State dam safety offices
 - Others (e.g. TVA)
 - Review Committee review and endorsement

