Climate Change Projections

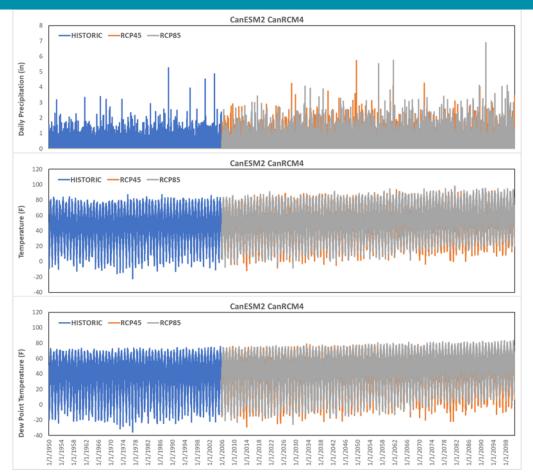
Applied Weather Associates (AWA) Dam Safety 2020-Virtual Conference

- Several Global Climate Models, each try to solve atmospheric dynamics to replicate future climate conditions
 - Very course resolution in space and time
 - Gross assumptions
 - Many unknowns
- Global Models are downscaled using Regional Climate Models to better replicate local climate/topography
- Two types of downscaling
 - Statistical
 - Dynamic

- Each model (global/regional) has issues/unknowns/errors/uncertainty
 - Incorrect replication of atmospheric processes
 - Inability to numerically quantify certain processes
 - Unknown positive/negative feedbacks
 - Inaccurate observational/gridded data
 - Future GHG concentrations
 - Downscaling techniques
 - Natural variability of climate system

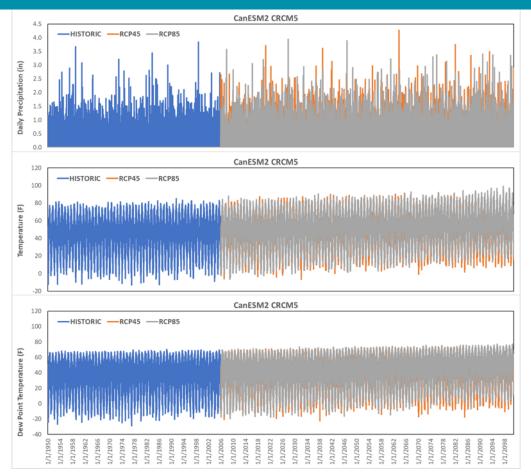
- No one climate model produces an ideal simulation
- Each represents one of many possible realizations
 - Utilize an ensemble approach
 - One model-multiple initial conditions
 - One GHG scenario but multiple models
- Range/distribution of ensemble projections are indicative of uncertainty
- Precipitation, especially extreme precip, shows the greatest range of variability
- Do provide useful projections and "what if" scenarios

Climate Model Projections Used

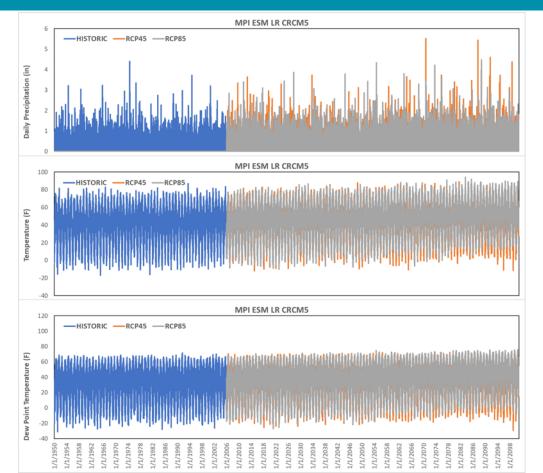

- 1) CanESM2 CanRCM4
 - Canadian Earth System Model (CanESM)
 - Canadian Regional Climate Model (CanRCM)
 - Historic 1950-2005 (Ppt, Ta, SH, Press)
 - RCP45 2006-2100 (Ppt, Ta, SH, Press)
 - RCP85 2006-2100 (Ppt, Ta, SH, Press)
- 2) CanESM2 CRCM5
 - Canadian Earth System Model (CanESM)
 - Canadian Regional Climate Model (CRCM)
 - Historic 1951-2005 (Ppt, Ta, SH, Press)
 - RCP45 2006-2100 (Ppt, Ta, SH, Press)
 - RCP85 2006-2100 (Ppt, Ta, SH, Press)
- 3) MPI ESM LR CRCM5
 - Max-Planck-Institute Earth System Model running on Low Resolution grid (MPI ESM LR)
 - Canadian Regional Climate Model (CRCM)
 - Historic 1951-2005 (Ppt, Ta, SH, Press)
 - RCP45 2006-2100 (Ppt, Ta, SH, Press)
 - RCP85 2006-2100 (Ppt, Ta, SH, Press)

WCORDEX NA-CORDEX

The North American CORDEX Program



Climate Model (CanESM2 CanRCM4)



Climate Model (CanESM2 CRCM5)

Climate Model (MPI ESM LR CRCM5)

Climate Change Analysis Methods

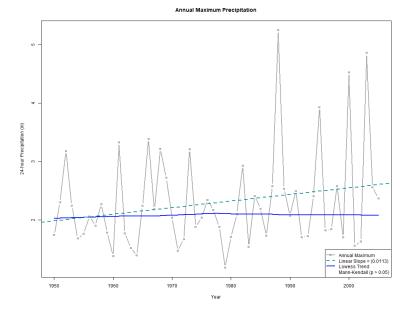
- 1) Trend Analysis for 1-day, 90-day, and Annual
 - Station Data
 - Model projections (Historic, RCP45, RCP85)
- 2) Precipitation Frequency Analysis for 1-day (Ppt, Summer, Winter), 90-day, and Annual
 - Model projections (Historic, RCP45, RCP85)
 - Estimate PF for 1-year through 10000-year
 - Quantify changes
- 3) Ppt_{max} Analysis for 1-day and 3-day
 - Derive model projection monthly Td climatologies (Historic, RCP45, RCP85)
 - Perform storm maximization of top 30 Ppt events (Historic, RCP45, RCP85)
 - Estimate Ppt_{adj} values through storm maximization process
 - Quantify changes

1. Station Trend Analysis (1-day & Annual)

• 1-day AMS Trend Analysis (Mann-Kendall)

STID_Short	STATION_ID	STATION	LATITUDE	LONGITUDE	ELEVATION	Ν	Trend
102	USC00190190	ASHBURNHAM, MA	42.6178	-71.9159	1108	78	None
104	USC00270690	BERLIN, NH	44.4535	-71.1855	920	102	None
105	USC00272999	FIRST CONNECTICUT LAKE, NH	45.0899	-71.2906	1650	90	None
108	USC00274399	KEENE, NH	42.9390	-72.3247	511	120	None
109	USC00274556	LANCASTER, NH	44.4958	-71.5767	860	72	Increase
111	USC00431243	CAVENDISH, VT	43.3847	-72.5988	842	111	None
112	USC00431360	CHELSEA, VT	43.9833	-72.4500	800	100	None
113	USC00431433	CHITTENDEN, VT	43.7063	-72.9618	1163	71	Increase
114	USC00431580	CORNWALL, VT	43.9573	-73.2106	345	119	Increase
116	USC00437054	SAINT JOHNSBURY, VT	44.4200	-72.0194	700	120	None
118	USC00193549	HEATH, MA	42.6667	-72.8167	1590	77	None

• Annual AMS Trend Analysis (Mann-Kendall)

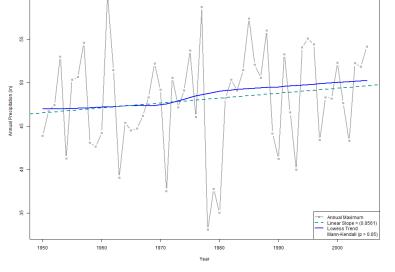

STID_Short	STATION_ID	STATION	LATITUDE	LONGITUDE	ELEVATION	Ν	Trend
102	USC00190190	ASHBURNHAM, MA	42.6178	-71.9159	1108	76	None
104	USC00270690	BERLIN, NH	44.4535	-71.1855	920	101	Increase
105	USC00272999	FIRST CONNECTICUT LAKE, NH	45.0899	-71.2906	1650	89	None
108	USC00274399	KEENE, NH	42.9390	-72.3247	511	70	Increase
109	USC00274556	LANCASTER, NH	44.4958	-71.5767	860	61	Increase
111	USC00431243	CAVENDISH, VT	43.3847	-72.5988	842	96	Increase
112	USC00431360	CHELSEA, VT	43.9833	-72.4500	800	69	None
113	USC00431433	CHITTENDEN, VT	43.7063	-72.9618	1163	70	Increase
114	USC00431580	CORNWALL, VT	43.9573	-73.2106	345	67	Increase
116	USC00437054	SAINT JOHNSBURY, VT	44.4200	-72.0194	700	107	Increase
118	USC00193549	HEATH, MA	42.6667	-72.8167	1590	63	None

1. Trend Analysis (1-day)

- 1-day AMS Trend Analysis (Mann-Kendall)
 - Stations ~ No Trend

- 1) CanESM2 CanRCM4 1-day AMS
 - trend depends on period investigated
 - Historical: no trend
 - RCP45: no trend
 - RCP85: increasing trend
- 2) CanESM2 CRCM5 1-day AMS
 - trend depends on period investigated
 - Historical: no trend
 - RCP45: no trend
 - RCP85: no trend

- 3) MPI ESM LR CRCM5 1-day AMS
 - trend depends on period investigated
 - Historical: no trend
 - RCP45: no trend
 - RCP85: no trend



1. Trend Analysis (365-day)

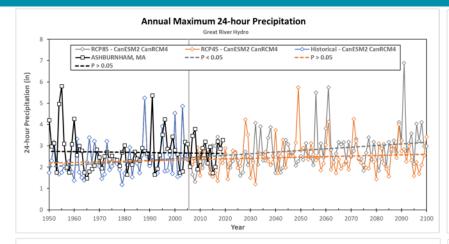
- 365-day AMS Trend Analysis (Mann-Kendall)
 - Stations ~ 50/50 mix of No Trend and Increase Trend

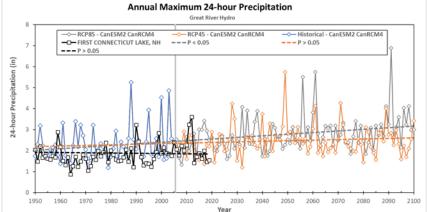
- 1) CanESM2 CanRCM4 365-day AMS
 - trend depends on period investigated
 - Historical: no trend
 - RCP45: no trend
 - RCP85: increasing trend

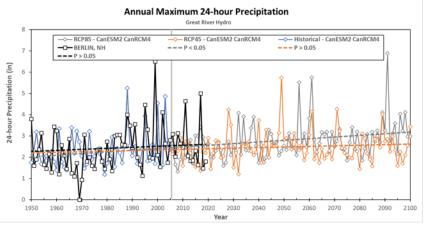
- 2) CanESM2 CRCM5 365-day AMS
 - trend depends on period investigated
 - Historical: increasing trend
 - RCP45: no trend
 - RCP85: no trend

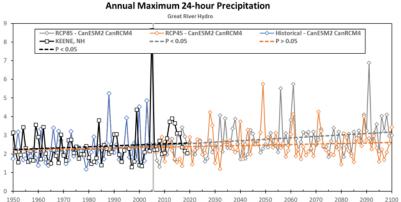
Annual Maximum Precipitation

- 3) MPI ESM LR CRCM5 365-day AMS
 - trend depends on period investigated
 - Historical: no trend
 - RCP45: no trend
 - RCP85: increasing trend




1. Station/Projection Trend (1-day) – Model 1


cipitation (in)


ã

-44

Year

-

2. Frequency Analysis (L-moments)

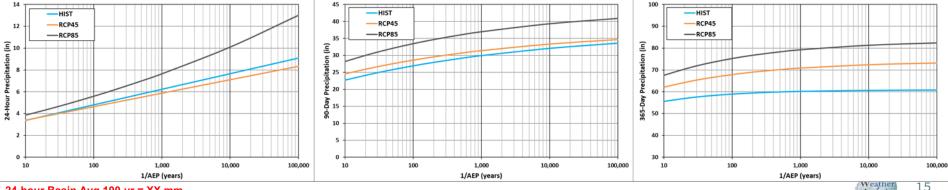
- 1-day, 90-day, 365-day L-moment Frequency Analysis (Historic, RCP45, RCP85)
 - Identification of Probability Distribution
 - Goodness-of-fit measures
 - L-moment Ratio Diagram
 - The regional weighted average L-Skewness and L-Kurtosis tend to be near the GEV distribution
 - Derivation of Uncertainty bounds
 - Monte-Carlo simulation
 - Point Value Annual Exceedance Estimates
 - Compare 10-, 50-, 100-, 1000-, and 10000-year AEPs

2. Frequency Analysis (CanESM2 CanRCM4)

- 1-day, 90-day, 365-day L-moment Frequency Analysis
 - Identification of Probability Distribution
 - Goodness-of-fit measures
 - L-moment Ratio Diagram
 - The regional weighted average L-Skewness and L-Kurtosis tend to be near the GEV distribution
 - Derivation of Uncertainty bounds
 - Monte-Carlo simulation
 - Point Value Annual Exceedance Estimates
 - Compared 10-, 50-, 100-, 1000-, and 10000-year AEPs

I-Day											
	10yr	50yr	100yr	1000yr	10000yr			Pct Change	e		Average
Historical	3.3	4.4	4.8	6.2	7.7	-	-	-	-	-	
RCP-45	3.4	4.3	4.6	5.9	7.6	101%	98%	97%	94%	100%	98%
RCP-85	3.8	5.0	5.6	7.6	10.1	114%	115%	116%	123%	132%	120%

*** 90-Day


*** 1

	90-Day											
-		10yr	50yr	100yr	1000yr	10000yr		F	oct Change	9		Average
	Historical	23	26	27	30	32	-	-	-	-	-	
	RCP-45	24	28	29	31	33	108%	107%	106%	105%	104%	106%
	RCP-85	28	32	33	37	39	124%	124%	124%	123%	123%	124%

*** 365-Day

000 20	.,										
	10yr	50yr	100yr	1000yr	10000yr		I	oct Change	e		Average
Historical	55	58	59	60	61	-	-	-	-	-	
RCP-45	62	67	68	71	72	112%	114%	115%	118%	119%	116%
RCP-85	67	73	75	79	81	121%	126%	128%	132%	134%	128%

Associates

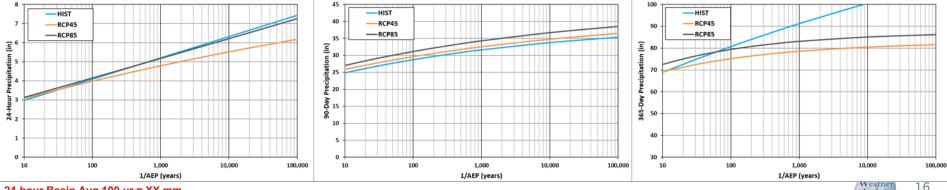
24-hour Basin Avg 100-yr = XX mm

2. Frequency Analysis (CanESM2 CRCM5)

- 1-day, 90-day, 365-day L-moment Frequency Analysis
 - Identification of Probability Distribution
 - Goodness-of-fit measures
 - L-moment Ratio Diagram
 - The regional weighted average L-Skewness and L-Kurtosis tend to be near the GEV distribution
 - Derivation of Uncertainty bounds
 - Monte-Carlo simulation
 - Point Value Annual Exceedance Estimates
 - Compared 10-, 50-, 100-, 1000-, and 10000-year AEPs

	10yr	50yr	100yr	1000yr	10000yr			Pct Change	e		Average
Historical	3.0	3.8	4.1	5.2	6.3	-	-	-	-	-	
RCP-45	3.1	3.7	4.0	4.8	5.2	103%	99%	97%	92%	82%	95%
RCP-85	3.1	3.8	4.1	5.2	6.2	105%	102%	101%	99%	98%	101%

*** 90-Day


*** 1 Dou

	JO-Day											
-		10yr	50yr	100yr	1000yr	10000yr		F	ct Change	9		Average
	Historical	25	28	29	32	34	-	-	-	-	-	
	RCP-45	26	29	30	33	35	104%	103%	103%	103%	103%	103%
	RCP-85	27	30	31	34	37	109%	108%	108%	108%	109%	109%

*** 365-Day

000 20	.,										
	10yr	50yr	100yr	1000yr	10000yr		F	ct Chang	e		Average
Historical	69	77	81	91	101	-	-	-	-	-	
RCP-45	69	74	75	79	80	100%	95%	93%	86%	80%	91%
RCP-85	72	78	79	83	85	105%	101%	98%	91%	85%	96%

Associates

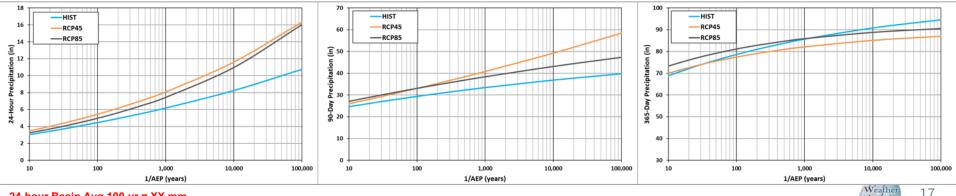
24-hour Basin Avg 100-yr = XX mm

2. Frequency Analysis (MPI ESM LR CRCM5)

- 1-day, 90-day, 365-day L-moment Frequency Analysis
 - Identification of Probability Distribution
 - Goodness-of-fit measures
 - L-moment Ratio Diagram
 - The regional weighted average L-Skewness and L-Kurtosis tend to be near the GEV distribution
 - Derivation of Uncertainty bounds
 - Monte-Carlo simulation
 - Point Value Annual Exceedance Estimates
 - Compared 10-, 50-, 100-, 1000-, and 10000-year AEPs

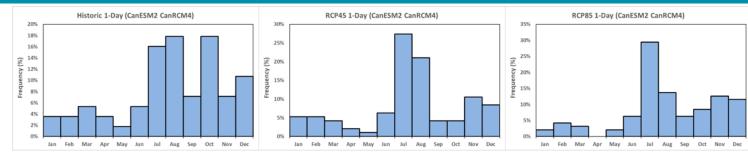
av											
	10yr	50yr	100yr	1000yr	10000yr		I	oct Change	e		Average
Historical	3.0	4.0	4.5	6.2	8.2	-	-	-	-	-	
RCP-45	3.4	4.8	5.4	8.1	7.4	114%	120%	122%	131%	90%	115%
RCP-85	3.2	4.4	5.0	7.4	11.0	107%	110%	112%	120%	133%	116%

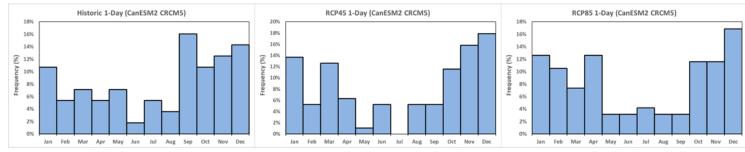
*** 90-Day

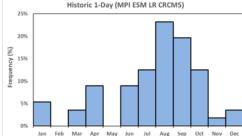

*** 1 Day

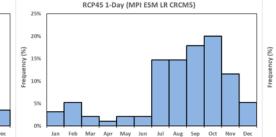
50-Day											
	10yr	50yr	100yr	1000yr	10000yr		I	Pct Chang	e		Average
Historical	25	28	29	33	37	-	-	-	-	-	
RCP-45	26	31	33	41	49	105%	110%	113%	122%	133%	117%
RCP-85	27	31	33	38	43	110%	112%	112%	115%	117%	113%

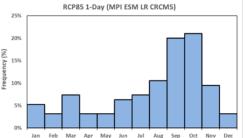
*** 365-Day


000 20	.,										
	10yr	50yr	100yr	1000yr	10000yr		I	oct Change	e		Average
Historical	69	76	79	86	91	-	-	-	-	-	
RCP-45	70	76	77	82	85	102%	99%	98%	96%	94%	98%
RCP-85	73	79	81	86	89	107%	104%	103%	100%	98%	102%


Associates

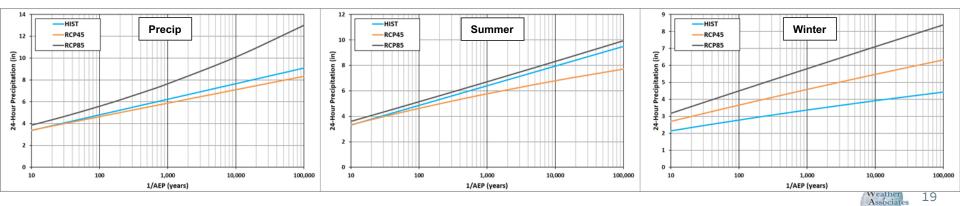



24-hour Basin Avg 100-yr = XX mm


2. Frequency Analysis (1-day AMS Seasonality)

2. Frequency Analysis (CanESM2 CanRCM4)

- 1-day L-moment Frequency Analysis (Precip, Summer, Winter)
 - Identification of Probability Distribution
 - Goodness-of-fit measures
 - L-moment Ratio Diagram
 - The regional weighted average L-Skewness and L-Kurtosis tend to be near the GEV distribution
 - Derivation of Uncertainty bounds
 - Monte-Carlo simulation
 - Point Value Annual Exceedance Estimates
 - Compared 10-, 50-, 100-, 1000-, and 10000-year AEPs


*** 1-Day	Precipita	tion									
	10yr	50yr	100yr	1000yr	10000yr		I	Pct Chang	e		Average
Historical	3.3	4.4	4.8	6.2	7.7	-	-	-	-	-	
RCP-45	3.4	4.3	4.6	5.9	7.6	101%	98%	97%	94%	100%	98%
RCP-85	3.8	5.0	5.6	7.6	10.1	114%	115%	116%	123%	132%	120%

*** 1-Day Summer

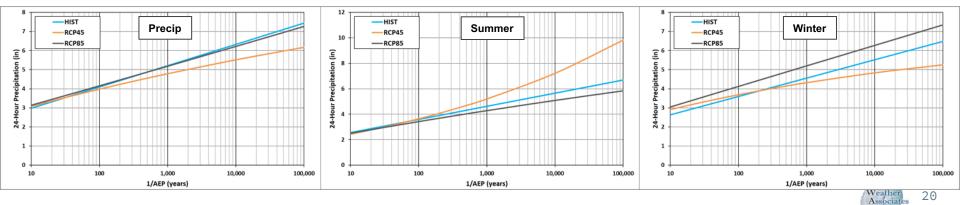
	1-Day	Juinin										
-		10yr	50yr	100yr	1000yr	10000yr		F	oct Change	e		Average
	Historical	3.3	4.4	4.9	6.4	7.9	-	-	-	-	-	
	RCP-45	3.3	4.2	4.6	5.8	6.8	101%	97%	95%	90%	86%	94%
	RCP-85	3.6	4.7	5.1	6.7	8.3	109%	106%	106%	105%	105%	106%

*** 1-Day Winter

	10yr	50yr	100yr	1000yr	10000yr		I	ct Change	e		Average
Historical	2.1	2.6	2.8	3.4	3.9	-	-	-	-	-	
RCP-45	2.7	3.4	3.7	4.6	5.5	126%	130%	132%	136%	140%	133%
RCP-85	3.1	4.1	4.5	5.8	7.1	148%	158%	162%	172%	181%	164%

2. Frequency Analysis (CanESM2 CRCM5)

- 1-day L-moment Frequency Analysis (Precip, Summer, Winter)
 - Identification of Probability Distribution
 - Goodness-of-fit measures
 - L-moment Ratio Diagram
 - The regional weighted average L-Skewness and L-Kurtosis tend to be near the GEV distribution
 - Derivation of Uncertainty bounds
 - Monte-Carlo simulation
 - Point Value Annual Exceedance Estimates
 - Compared 10-, 50-, 100-, 1000-, and 10000-year AEPs


*** 1-Day	Precipita	tion									
	10yr	50yr	100yr	1000yr	10000yr		I	oct Change	5		Average
Historical	3.0	3.8	4.1	5.2	6.3	-	-	-	-	-	
RCP-45	3.1	3.7	4.0	4.8	5.2	103%	99%	97%	92%	82%	95%
RCP-85	3.1	3.8	4.1	5.2	6.2	105%	102%	101%	99%	98%	101%

*** 1-Day Summer

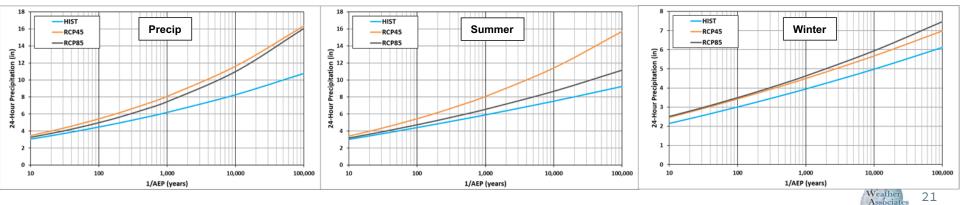
1-Day	Juilling										
	10yr	50yr	100yr	1000yr	10000yr		I	Pct Change	9		Average
Historical	2.5	3.3	3.6	4.6	5.7	-	-	-	-	-	
RCP-45	2.4	3.2	3.6	5.2	7.2	95%	99%	102%	113%	128%	107%
RCP-85	2.5	3.1	3.4	4.3	5.1	98%	96%	95%	93%	90%	94%

*** 1-Day Winter

	10yr	50yr	100yr	1000yr	10000yr		I	ct Change	e		Average
Historical	2.6	3.3	3.6	4.6	5.5	-	-	-	-	-	
RCP-45	2.9	3.5	3.7	4.3	4.8	111%	105%	103%	95%	88%	1 00%
RCP-85	3.0	3.8	4.1	5.2	6.3	116%	115%	115%	114%	114%	115%

2. Frequency Analysis (MPI ESM LR CRCM5)

- 1-day L-moment Frequency Analysis (Precip, Summer, Winter)
 - Identification of Probability Distribution
 - Goodness-of-fit measures
 - L-moment Ratio Diagram
 - The regional weighted average L-Skewness and L-Kurtosis tend to be near the GEV distribution
 - Derivation of Uncertainty bounds
 - Monte-Carlo simulation
 - Point Value Annual Exceedance Estimates
 - Compared 10-, 50-, 100-, 1000-, and 10000-year AEPs


*** 1-Day	Precipita	tion									
	10yr	50yr	100yr	1000yr	10000yr		I	Pct Chang	e		Average
Historical	3.0	4.0	4.5	6.2	8.2	-	-	-	-	-	
RCP-45	3.4	4.8	5.4	8.1	7.4	114%	120%	122%	131%	90%	115%
RCP-85	3.2	4.4	5.0	7.4	11.0	107%	110%	112%	120%	133%	116%

*** 1-Day Summer

	-Day	Juilling										
		10yr	50yr	100yr	1000yr	10000yr		F	oct Change	e		Average
Histor	ical	3.0	4.0	4.4	5.9	7.5	-	-	-	-	-	
RCP-4	5	3.4	4.8	5.5	8.1	11.4	113%	120%	124%	137%	152%	129%
RCP-8	5	3.2	4.2	4.7	6.6	8.7	106%	107%	108%	111%	115%	109%

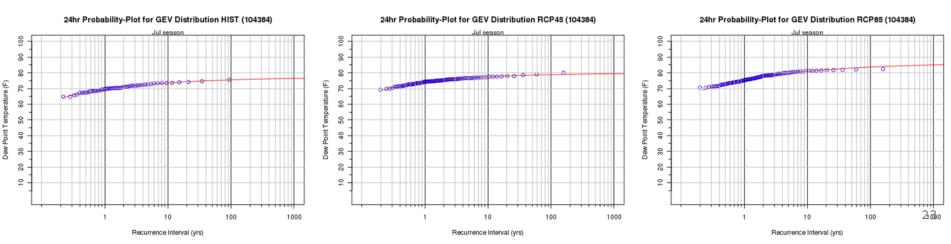
*** 1-Day Winter

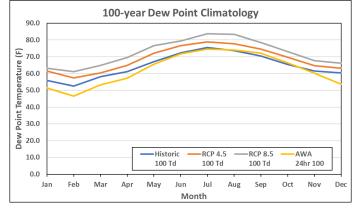
1 Duy	winter .										
	10yr	50yr	100yr	1000yr	10000yr		F	oct Change	e		Average
Historical	2.1	2.7	3.0	4.0	5.0	-	-	-	-	-	
RCP-45	2.4	3.1	3.4	4.5	5.7	115%	114%	114%	114%	114%	114%
RCP-85	2.5	3.2	3.5	4.6	5.9	117%	116%	116%	117%	119%	117%

3. PMP Ratio Analysis

- Estimate 1-day and 3-day Ppt_{adj} for top 30 1-day and 3-day precipitation events
 - Extracted top 30 precipitation events (P) and associated meteorological data
 - Deive monthly dew point (td) climatologies (Historic, RCP45, RCP85)
 - Quantified each storm events precipitable water (Pobs)
 - Quantified each storm events climatological maximum precipitable water (Pw_100)
 - Calculated each storm events maximization factor

• (**r = PW_100 / PW_obs**)

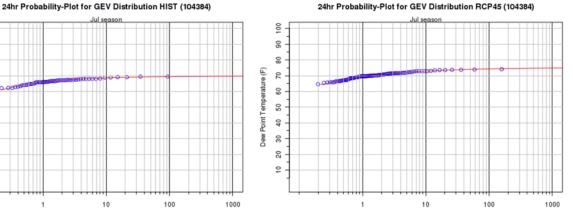

Estimated **Ppt_{adj}** (~PMP) value for each event (**P** * **r**)

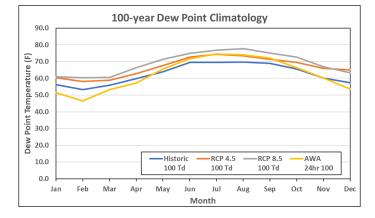


3a. Td Analysis (CanESM2 CanRCM4)

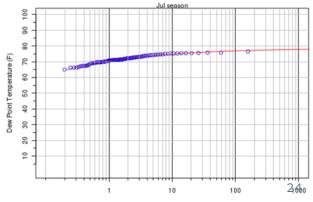
- Calculate monthly dew point temperature (Td) 100-year climatology
 - o all months have similar shape/seasonality
 - the Historic has largest range
 - Historic Average 64.5 F
 - RCP45 Average 68.5 F
 - RCP85 Average 72.2 F

*** AWA 24-hour 100-year Td Climatology (gold), is similar in summer and lower in winter than historic projection





3a. Td Analysis (CanESM2 CRCM5)


- Calculate monthly dew point temperature (Td) 100-year climatology
 - all months have similar shape/seasonality 0
 - the **RCP85** has largest range
 - Historic Average 62.5 F 0
 - RCP45 Average 66.7 F 0
 - RCP85 Average 68.9 F 0

*** AWA 24-hour 100-year Td Climatology (gold), is greater in summer and lower in winter than historic projection

24hr Probability-Plot for GEV Distribution RCP85 (104384)

Recurrence Interval (yrs)

1

100

6

8

2

60

50

8

20

2

e (F)

Point T ŝ

Recurrence Interval (vrs)

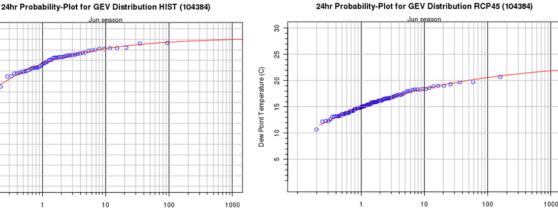
Recurrence Interval (yrs)

3a. Td Analysis (MPI ESM LR CRCM5)

- Calculate monthly dew point temperature (Td) 100-year climatology
 - all months have similar shape/seasonality 0
 - the **RCP85** has largest range
 - Historic Average 62.2 F 0
 - RCP45 Average 64.0 F Ο
 - RCP85 Average 66.3 F 0

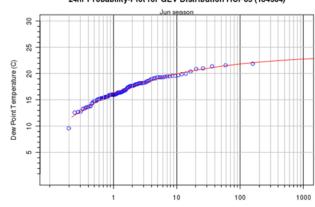
16

00

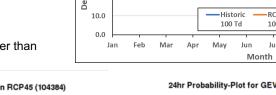

9

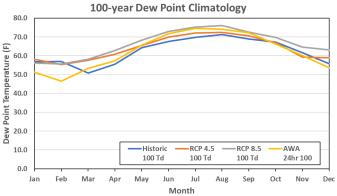
-N

0 QI


Ģ 2

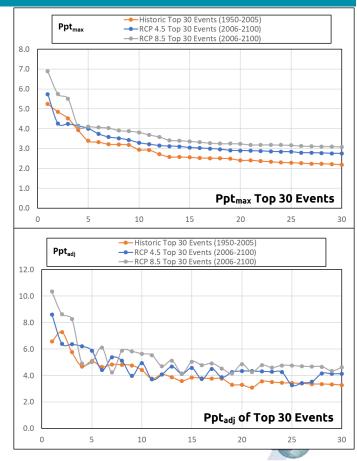
O 12 *** AWA 24-hour 100-year Td Climatology (gold), is greater in summer and lower in winter than historic projection


Recurrence Interval (yrs)


24hr Probability-Plot for GEV Distribution RCP85 (104384)

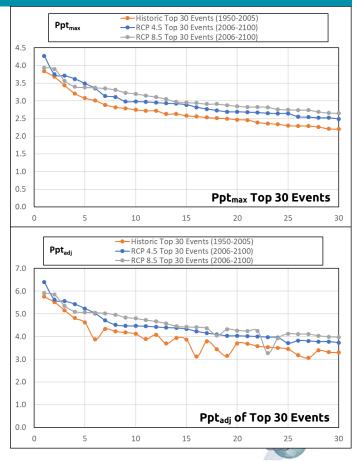
Recurrence Interval (yrs)

Recurrence Interval (vrs)



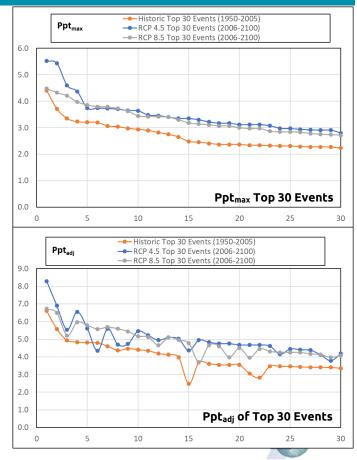
3b. Ppt_{max} Analysis (CanESM2 CanRCM4)

- Estimate 1-day Ppt_{adj} for top 30 1-day precipitation events
 - Extracted top 30 precipitation events (P) and associated meteorological data
 - Quantified each storm events precipitable water (**Pobs**)
 - Quantified each storm events climatological maximum precipitable water (Pw_100)
 - Calculated each storm events maximization factor (r = PW_100 / PW_obs)
 - Estimated **Ppt**_{adj} value for each event (**P** * **r**)


	CanESM2 CanRCM4							
Ppt _{max}	(in)	Pct Change	Ppt _{adj}	(in)	rank	Pct Change		
Historical	5.3	-	Historical	7.3	2	-		
RCP45	5.7	108%	RCP45	8.6	1	118%		
RCP85	6.9	130%	RCP85	10.3	1	141%		

3b. Ppt_{max} Analysis (CanESM2 CRCM5)

- Estimate 1-day Ppt_{adj} for top 30 1-day precipitation events
 - Extracted top 30 precipitation events (P) and associated meteorological data
 - Quantified each storm events precipitable water (Pobs)
 - Quantified each storm events climatological maximum precipitable water (Pw_100)
 - Calculated each storm events maximization factor (r = PW_100 / PW_obs)
 - Estimated **Ppt**_{adj} value for each event (**P** * **r**)


CanESM2 CRCM5							
Ppt _{max}	(in)	Pct Change	Ppt _{adj}	(in)	rank	Pct Change	
Historical	3.8	-	Historical	5.8	1	-	
RCP45	4.3	113%	RCP45	6.4	1	110%	
RCP85	3.9	103%	RCP85	5.9	1	102%	

3b. Ppt_{max} Analysis (MPI ESM LR CRCM5)

- Estimate 1-day Ppt_{adj} for top 30 1-day precipitation events
 - Extracted top 30 precipitation events (P) and associated meteorological data
 - Quantified each storm events precipitable water (**Pobs**)
 - Quantified each storm events climatological maximum precipitable water (Pw_100)
 - Calculated each storm events maximization factor (r = PW_100 / PW_obs)
 - Estimated **Ppt**_{adj} value for each event (**P** * **r**)

MPI ESM LR CRCM5							
Ppt _{max}	(in)	Pct Change	Ppt _{adj}	(in)	rank	Pct Change	
Historical	4.4	-	Historical	6.6	1	-	
RCP45	5.5	125%	RCP45	8.3	1	126%	
RCP85	4.5	102%	RCP85	6.7	1	102%	

4. Summary (Trend Analysis)

- Station data (1 day) (Annual)
 - 8 -no trend, 3 increasing (1-day)
 - 4 -**no trend**, 7 increasing (Annual)
- **1-day**
 - Historic 3 no trend
 - RCP45 3 no trend
 - RCP85 2 no trend and 2 increasing trend
- **90-day**
 - Historic 3 no trend
 - RCP45 3 no trend
 - RCP85 1 no trend and 2 increasing trend
- Annual
 - Historic 2 no trend and 1 increasing trend
 - RCP45 3 no trend
 - RCP85 1 no trend and 2 increasing trend

4. Summary (Precipitation Frequency Analysis)

Ο

- 1-day (rcp45 to rcp85)
 - Max = 115% to 120%
 - Min 95% to 101%
 - Range = 20% to 19%
 - Average = 103% to 112%

- 1-day <mark>Summer</mark> (rcp45 to rcp85)
 - Max = 129% to 109%
 - Min 94% to 94%
 - Range = 35% to 15%
 - Average = 110% to 103%

- 1-day Winter (rcp45 to rcp85)
 - Max = 133% to 164%
 - Min 100% to 115%

Ο

- Range = 33% to 49%
- Average = 116% to 132%

- **90-day**
 - Max = 117% to 124%
 - Min 103% to 109%
 - Range = 14% to 15%
 - Average = 117% to 124%
- Annual
 - Max = 116% to 128%
 - Min 91% to 96%
 - Range = 25% to 32%
 - Average = 102% to 109%

4. Summary (PPt_{adj})

• Dew Point Climatologies

- All scenarios produce similar shape/season of monthly 100yr Td values
- CanESM2 CanRCM4 has highest 100yr Td values
- More of scaling adjustment of 2-3 F Historic to RCP45 and 2-3 F for RCP45 to RCP85

• 1day Ppt_{max} (RCP45 to rcp85)

- Max = 125% to 130%
- Min 108% to 102%
- Range = 17% to 28%
- Average = 115% to 112%

• 1day Ppt_{adj} (RCP45 to rcp85)

- Max = 126% to 141%
- Min 110% to 102%
- Range = 16% to 39%
- Average = 110% to 102%

3day Ppt_{max} (RCP45 to rcp85)

- Max = 126% to 143%
- Min 75% to 72%
- Range = 51% to 71%
- Average = 101% to 114%
- 3day Ppt_{adj} (RCP45 to rcp85)
 - Max = 127% to 146%
 - Min 75% to 72%
 - Range = 52% to 74%
 - Average = 102% to 112%

The largest observed Ppt is not always equal PMP based on in-place maximization

5. Conclusion

- Climate Models Project Temperature and Dew Point increases
- <u>1-day</u> no significant change of Precip magnitude by 2100 (still within uncertainty)

*** higher confidence of an increase of Winter magnitude by 2100 (RCP85)

- <u>90-day</u> no significant change of Precip magnitude by 2100 (still within uncertainty); RCP85 higher confidence of an increase.
- <u>Annual</u> no significant change of Precip magnitude by 2100 (still within uncertainty).

5. Global Summary based on Five Studies

- Indonesia
 - No change in short duration (<3-day), higher probability for increase for longer durations (>30-days)
- Peru
 - Significant change in short duration (<3-day), no significant change in longer durations (>30-days)
- Eastern United States
 - No significant change in durations 1-day through annual precipitation
 - Higher confidence of increase in winter precipitation
- Southern Canada
 - Significant change short duration (<3-day), no significant change longer durations 30-days through annual
- Northern United States/Southern Canada
 - No significant change in longer durations 1-day through annual precipitation
 - All Temperature and Dew Point Temperature Increases


Questions

Doug Hultstrand

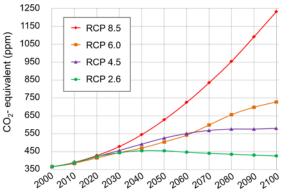
Senior HydroMeteorologist Applied Weather Associates dhultstrand@appliedweatherassociates.com 720-771-5840

Bill Kappel

Chief Meteorologist Applied Weather Associates billkappel@appliedweatherassociates.com 719-488-4311

- Various research groups conduct climate change modeling
 - Share data via CMIP5 group
 - Utilize same requirements to make each model comparable
 - 20 different groups in CMIP5
- Representative Concentration Pathway (RCP)
 - RCP account for unknown future GHG emissions
- RCP scenarios used as boundary conditions for CMIP5 GCMs
 - Commonly use RCP 4.5 and 8.5

Climate Model Projections/Output


- Projections are relative to temperatures and sea levels in the late-20th to early-21st centuries (1986–2005 average). Temperature projections can be converted to a reference period of 1850–1900 or 1980–99 by adding 0.61 or 0.11 °C, respectively
- The **RCP 4.5** scenario is a stabilization scenario, which means the radiative forcing level stabilizes at 4.5 W/m2 before 2100 by employment of a range of technologies and strategies for reducing greenhouse gas emissions.
- The **RCP 8.5** emissions scenario the radiative forcing level reaches 8.5 W/m2 characterized by increasing greenhouse gas emissions over time representative for scenarios in the literature leading to high greenhouse gas concentration levels.

AR5 global warming increase (°C) projections[11]

	2046–2065	2081-2100
Scenario	Mean and likely range	Mean and likely range
RCP2.6	1.0 (0.4 to 1.6)	1.0 (0.3 to 1.7)
RCP4.5	1.4 (0.9 to 2.0)	1.8 (1.1 to 2.6)
RCP6.0	1.3 (0.8 to 1.8)	2.2 (1.4 to 3.1)
RCP8.5	2.0 (1.4 to 2.6)	3.7 (2.6 to 4.8)

IPCC AR5 Greenhouse Gas Concentration Pathways

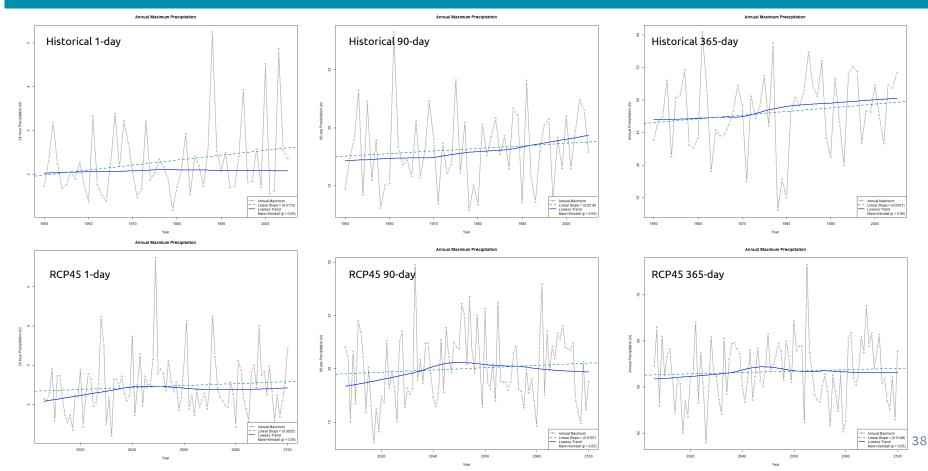
Representative Concentration Pathways (RCPs) from the fifth Assessment Report by the International Panel on Climate Change

1. Trend Analysis (90-day)

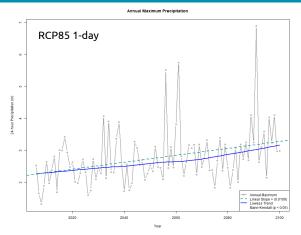
 Great River station 90-day AMS Trend Analysis (Mann-Kendall)

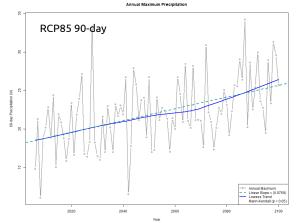
- 1) CanESM2 CanRCM4 90-day AMS
 - trend depends on period investigated
 - Historical: no trend
 - RCP45: no trend
 - RCP85: increasing trend

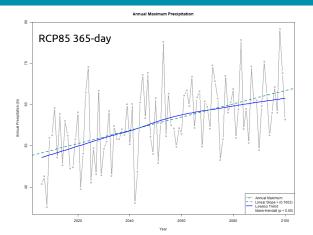
Good of the second seco


Annual Maximum Precipitation

- 2) CanESM2 CRCM5 90-day AMS
 - trend depends on period investigated
 - Historical: no trend
 - RCP45: no trend
 - RCP85: increasing trend

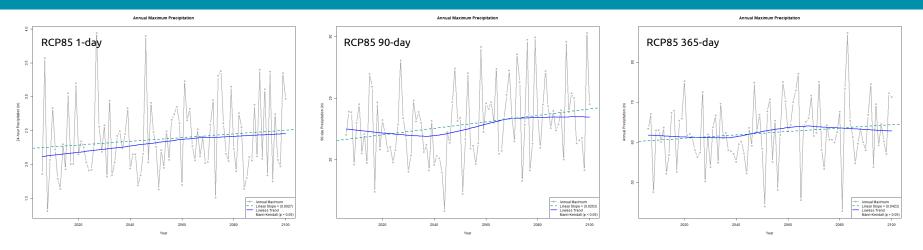

- 3) MPI ESM LR CRCM5 90-day AMS
 - trend depends on period investigated
 - Historical: no trend
 - RCP45: no trend
 - RCP85: no trend




1. Trend Analysis (CanESM2 CanRCM4)

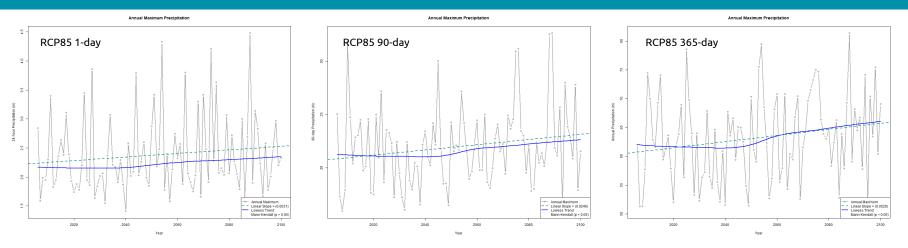
1. Trend Analysis (CanESM2 CanRCM4)

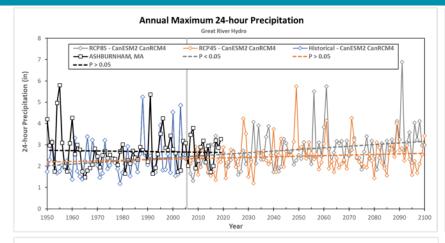


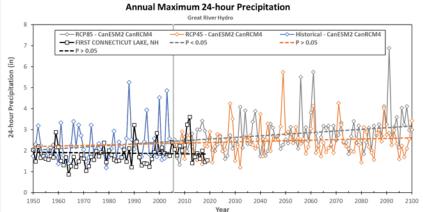


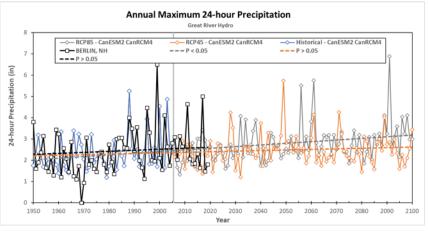
1. Trend Analysis (CanESM2 CRCM5)

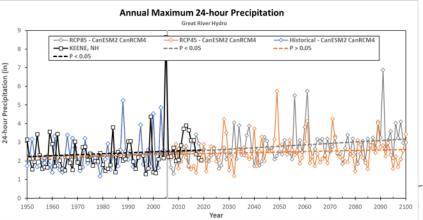
1. Trend Analysis (CanESM2 CRCM5)

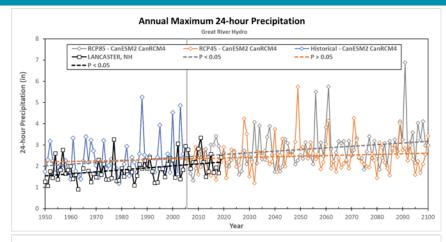


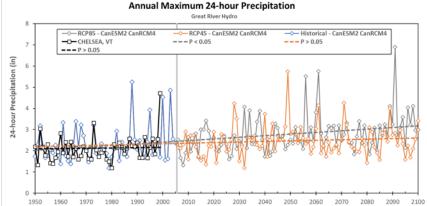

1. Trend Analysis (MPI ESM LR CRCM5)

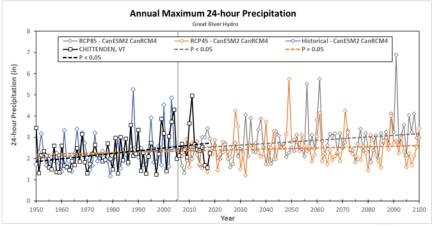


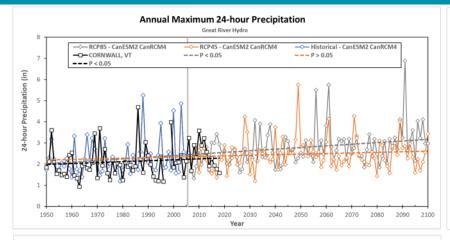

1. Trend Analysis (MPI ESM LR CRCM5)

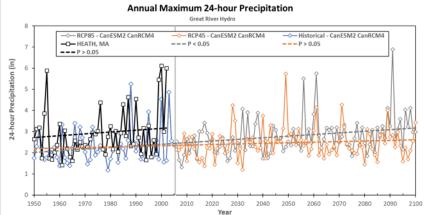






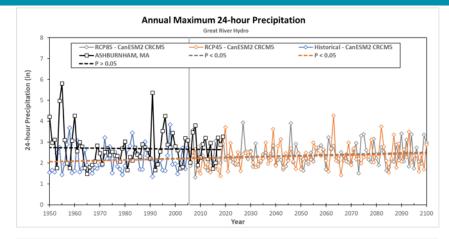


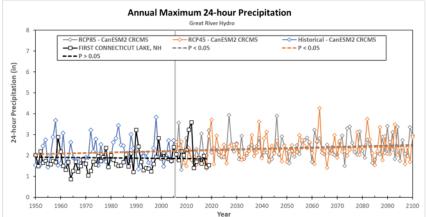


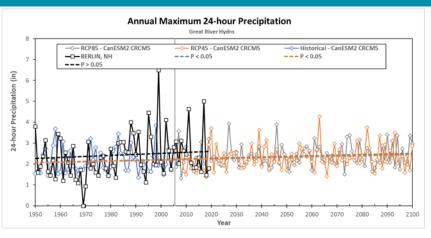


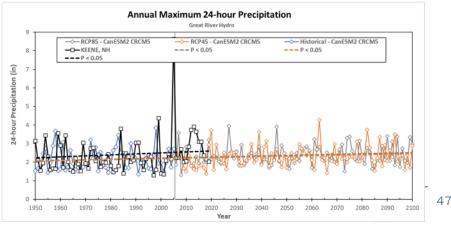
Year

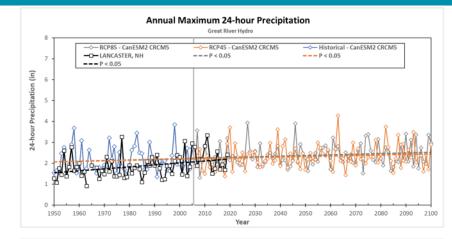
Annual Maximum 24-hour Precipitation Great River Hydro RCP45 - CanESM2 CanRCM4 — Historical - CanESM2 CanRCM4 ——— CAVENDISH, VT ---P < 0.05P > 0.05 --- P > 0.05 scipitation (in) P. F 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Year

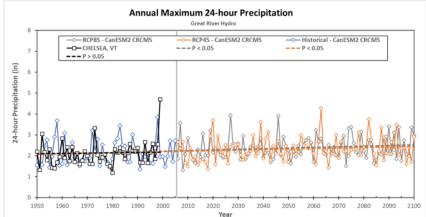


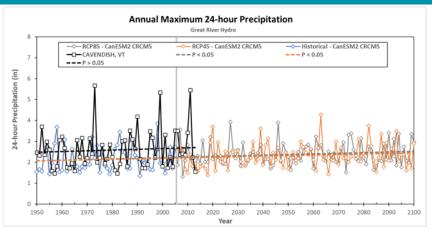


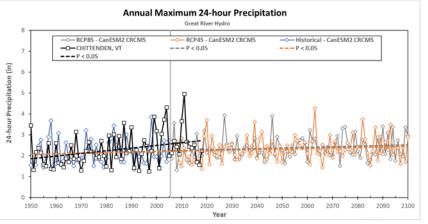


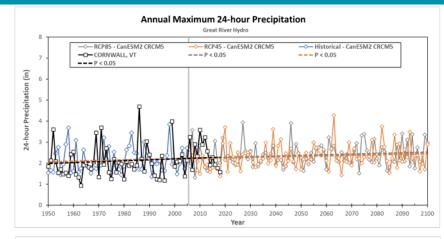

Annual Maximum 24-hour Precipitation Great River Hydro - SAINT JOHNSBURY, VT = = = P < 0.05---P > 0.05 --- P > 0.05 cipitation (in) ur Pre 24-hoi 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Year

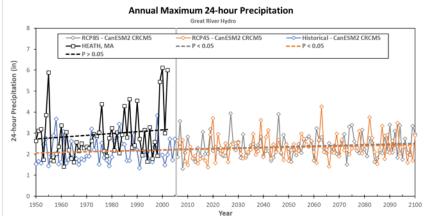


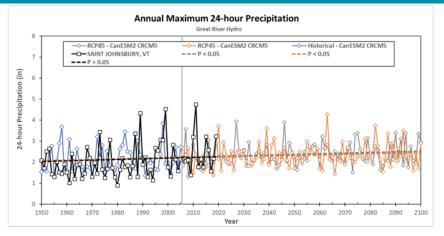


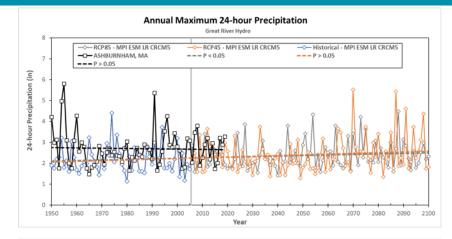


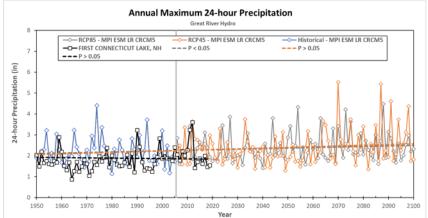


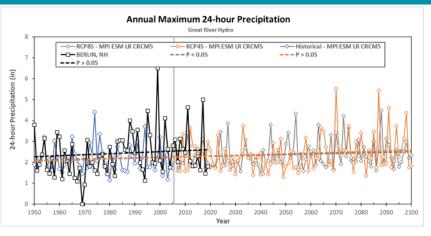


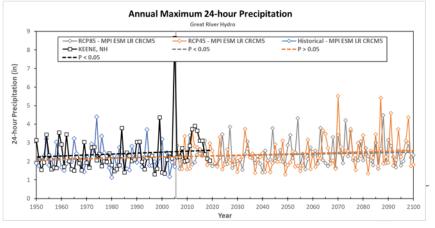


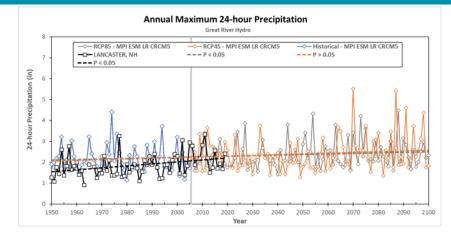


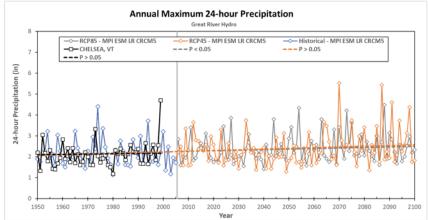


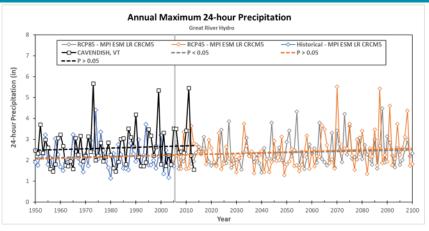


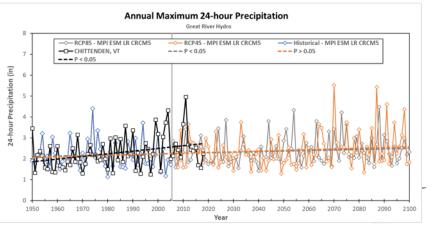


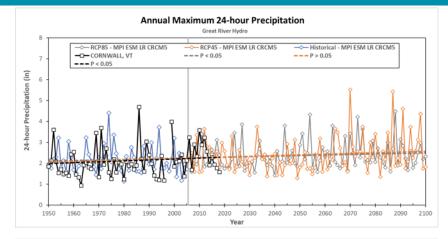


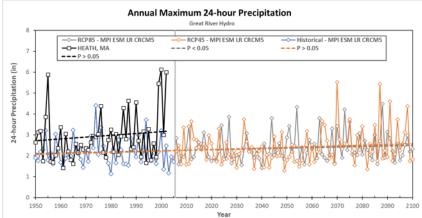


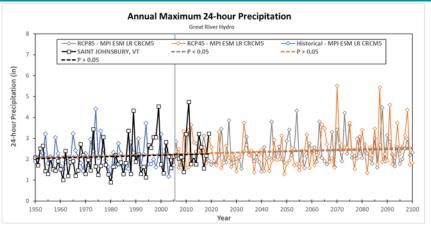


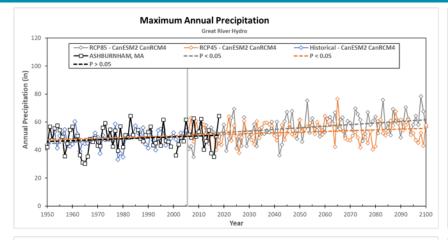


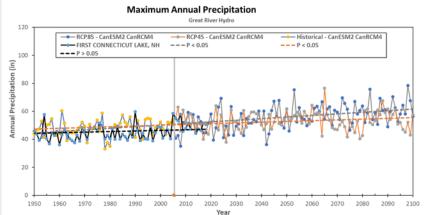


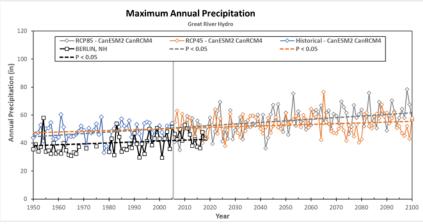


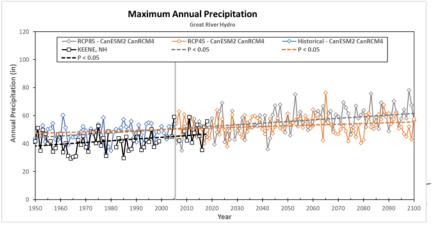


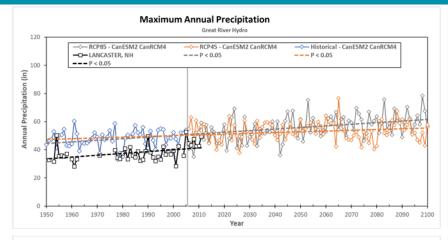


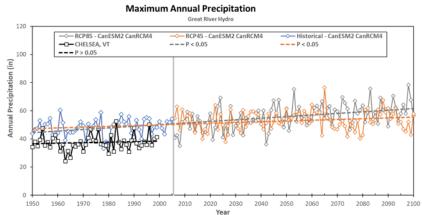


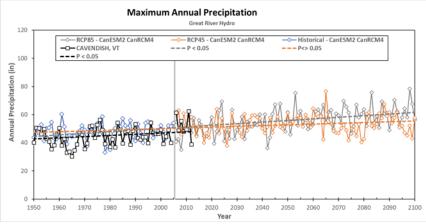


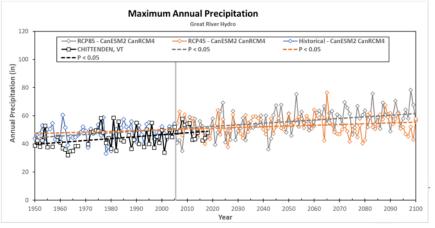


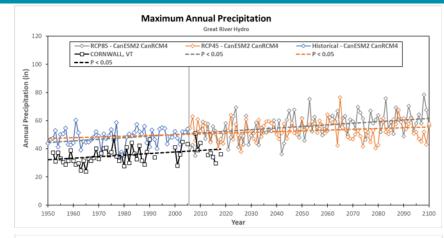


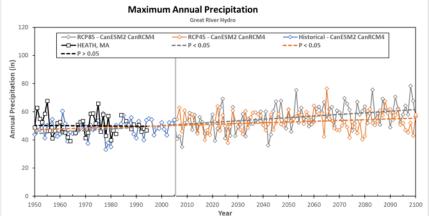


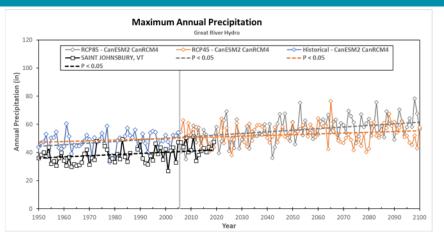


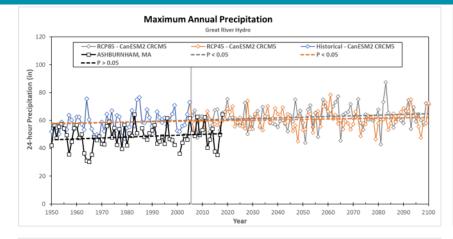


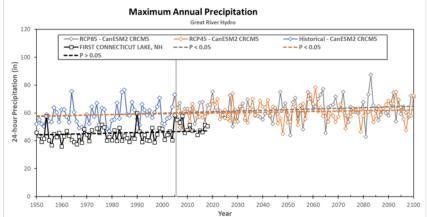


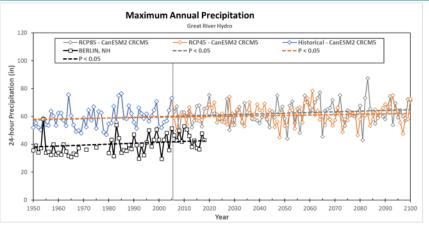


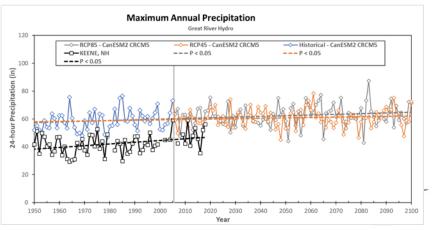


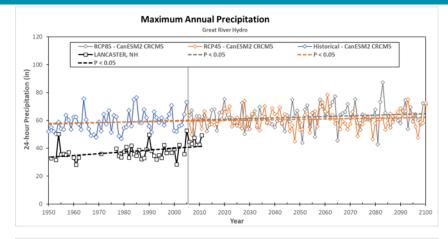


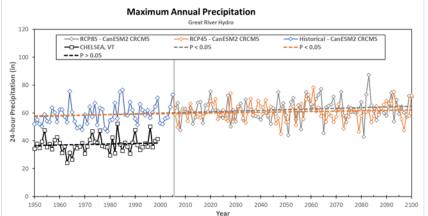


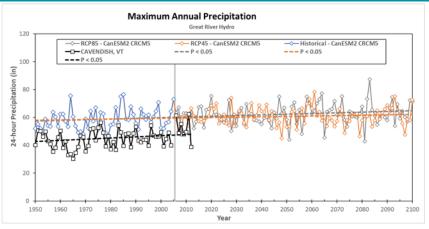


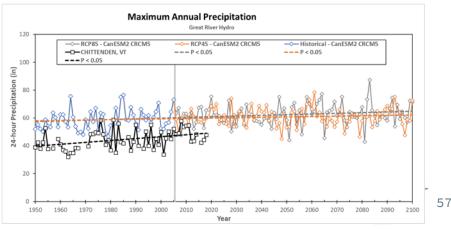


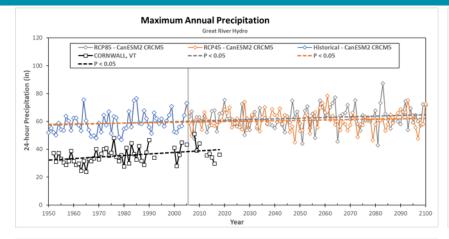


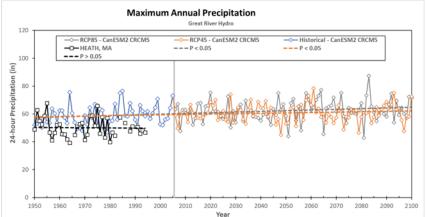


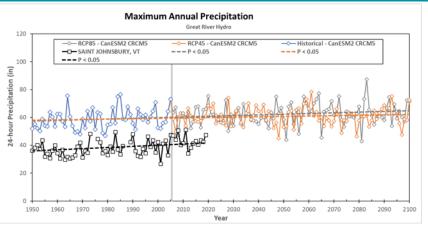


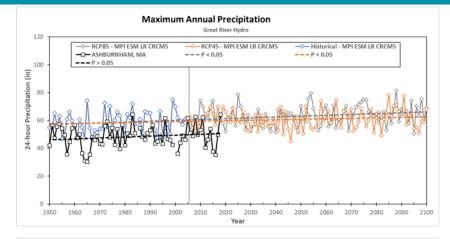


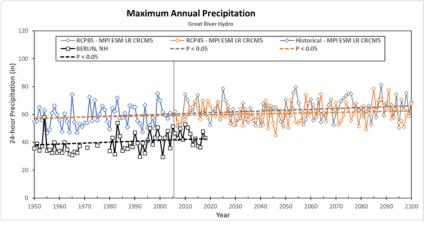


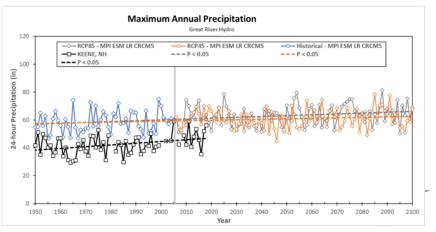


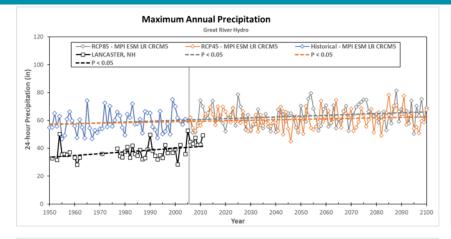


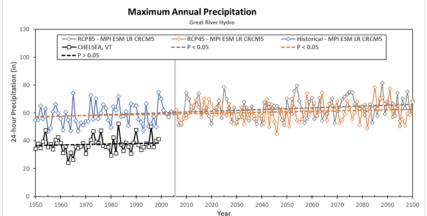


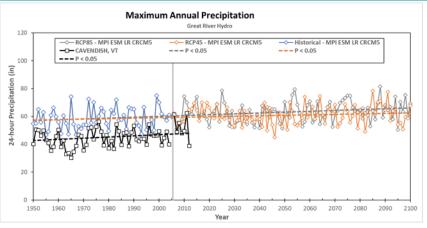


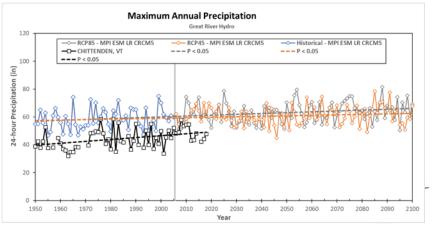


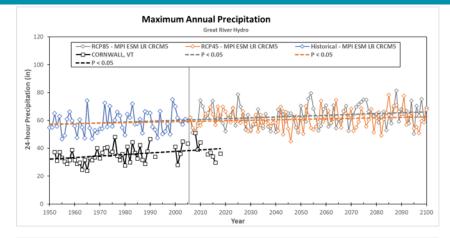


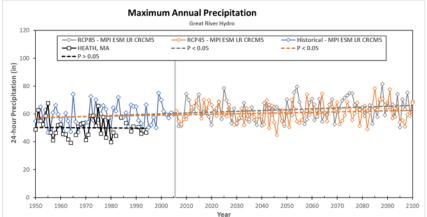


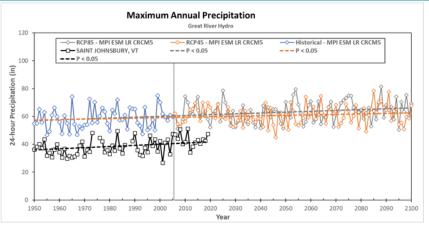


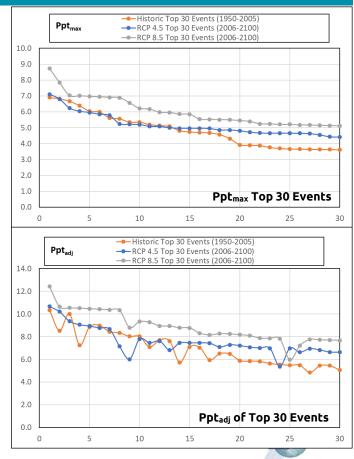










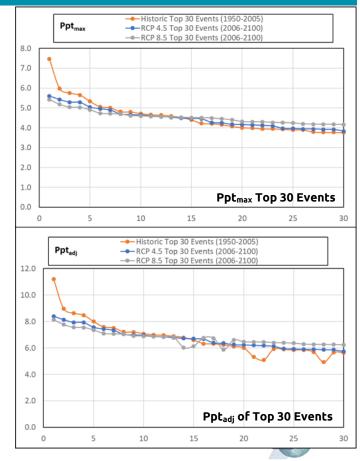

Applied Weather Associates 61

3b. Ppt_{max} Analysis (CanESM2 CanRCM4)

- Estimate 3-day Ppt_{adj} for top 30 3-day precipitation events
 - Extracted top 30 precipitation events (P) and associated meteorological data
 - Quantified each storm events precipitable water (Pobs)
 - Quantified each storm events climatological maximum precipitable water (Pw_100)
 - Calculated each storm events maximization factor (r = PW_100 / PW_obs)
 - Estimated **Ppt**_{adj} value for each event (**P** * **r**)

CanESM2 CanRCM4							
Ppt _{max}	(in)	Pct Change	Ppt _{adj}	(in)	rank	Pct Change	
Historical	6.9	-	Historical	10.4	1	-	
RCP45	7.1	103%	RCP45	10.7	1	103%	
RCP85	8.7	126%	RCP85	12.4	1	119%	

+++ values represent 3-day not 72-hour

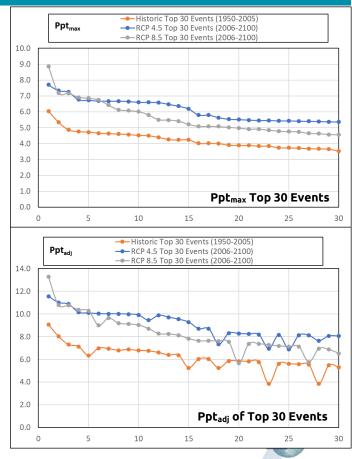


3b. Ppt_{max} Analysis (CanESM2 CRCM5)

- Estimate 3-day Ppt_{adj} for top 30 3-day precipitation events
 - Extracted top 30 precipitation events (P) and associated 0 meteorological data
 - Quantified each storm events precipitable water (Pobs) 0
 - Quantified each storm events climatological maximum 0 precipitable water (Pw 100)
 - Calculated each storm events maximization factor 0 (r = PW 100 / PW obs)
 - Estimated **Ppt**_{adi} value for each event (**P** * **r**) 0

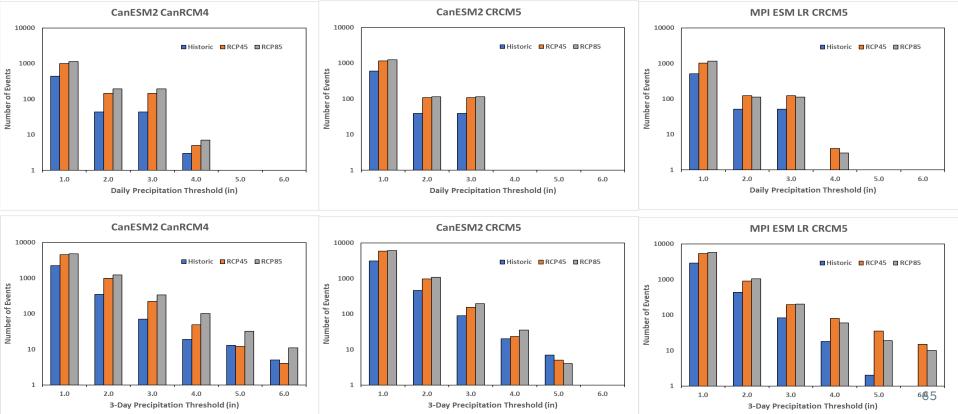
CanESM2 CRCM5						
Ppt _{max}	(in)	Pct Change	Ppt _{adj}	(in)	rank	Pct Change
Historical	7.5	-	Historical	11.2	1	-
RCP45	5.6	75%	RCP45	8.4	1	75%
RCP85	5.4	72%	RCP85	8.1	1	72%

+++ values represent 3-day not 72-hour



3b. Ppt_{max} Analysis (MPI ESM LR CRCM5)

- Estimate 3-day Ppt_{adj} for top 30 3-day precipitation events
 - Extracted top 30 precipitation events (P) and associated meteorological data
 - Quantified each storm events precipitable water (Pobs)
 - Quantified each storm events climatological maximum precipitable water (Pw_100)
 - Calculated each storm events maximization factor (r = PW_100 / PW_obs)
 - Estimated **Ppt**_{adj} value for each event (**P** * **r**)


MPI ESM LR CRCM5							
Ppt _{max}	(in)	Pct Change	Ppt _{adj}	(in)	rank	Pct Change	
Historical	6.1	-	Historical	9.1	2	-	
RCP45	7.7	126%	RCP45	11.6	1	127%	
RCP85	8.9	146%	RCP85	13.3	1	146%	

+++ values represent 3-day not 72-hour

4. Summary (Frequency of 1-day and 3-day events)

Frequency of 1-day and 3-day events greater than 1-, 2-, 3-, 4-, 5-, and 6-inches

