Extreme Precipitation Estimates for State Regulators - Past, Present, and Future

TASK #1 - Probable Maximum Precipitation - Texas Example

ASDSO Soapbox Session September 12, 2017

ASDSO 2017 - San Antonio, TX

Colorado Water Conservation Board Colorado Division of Water Resources CO-NM REPS Colorado-New Mexico Regional Extreme Precipitation Study

New-Mexico Office of the State Engineer

Texas Statewide Probable Maximum Precipitation (PMP) Development

Bill Kappel, 719-4	88-4311		Wa	arren						
Samuelson, 512-										
billkappel@applie										
warren.										
Applied Weather	Tex	Texas Dept. of								
Environmental Quality(TCEQ)										
Colorado Water Conservation Board Colorado Division of Water Resources	Colorado-New I	CO-NM REPS Mexico Regional Extreme Precipitation Stu	dy	New-Mexico Office of the State Engineer						

Definition: The *theoretically* greatest depth of precipitation for a given duration that is *physically possible* over a given storm area at a particular *geographic location* at a certain time of year (HMR 59, 1999)

CO-NM REPS Colorado-New Mexico Regional Extreme Precipitation Study

Probable Maximum Precipitation - History

Colorado Water Conservation Board Colorado Division of Water Resources CO-NM REPS Colorado-New Mexico Regional Extreme Precipitation Study

New-Mexico Office of the State Engineer

Probable Maximum Precipitation - History

- Storm Based Approach-Deterministic
 - Maximize storms
 - Transposition storms
- Combine into PMP design storm
 - By storm type
 - By area size
 - By duration
- Subjective decisions involved

Probable Maximum Precipitation - History

- HMRs have become out-of-date
 - Based on outdated methods and techniques
 - Better understanding of meteorology
 - Storm datasets not updated
 - More than 40 years missing from HMR 51
- Effect of topography not accurate
 - Subjective
 - Lack of empirical data-unknowns

PMP- Texas CEQ Perspective

- HMR 51 too conservative, not credible with elected officials
- No funding initially
- Obtain approval from management
- Management approved project with funds
- Used FEMA grant funds over 2 years

Important Elements – Texas CEQ Perspective

- Peer Review Team (Contracts with 2 of team)
- 4 meetings with all members
- Storm data from around the state, including data from 2016
- Protection of the data
- How do we allow the public to use the PMP tool while hosting the data?
- Do we have the expertise to provide the tool?
- How quickly can we provide to the public?

AWA Probable Maximum Precipitation Studies

Colorado Water Conservation Board Colorado Division of Water Resources

DNR

Probable Maximum Precipitation - Today

- Update the storm database
 - Produce Depth-Area-Duration (DAD) analyses for all major storm events
- Use updated dew point analyses to maximize storms
 - Storm representative & maximum dew points
- Use of state-of-the-science procedures and tools
 - Extreme Rainfall, GIS, Precip Frequency, Geographic Transposition Factor
- Provide gridded PMP values
 - All locations considered in this study, all durations/area sizes as required
 - Utilize PMP Evaluation Tool to produce PMP on a gridded basis (~2.5sqmi grid)
- Provide <u>continuity</u> of PMP values across the region in <u>space and time</u> while taking into considerations differences in topography and climate

Texas Topography

Texas Mean Annual Precipitation

Probable Maximum Precipitation – Goals

- Ensure consistency with other studies
- Already have a very good idea of important storms
- Three storm types of concern-how to define each
 - General (synoptic)
 - Local (thunderstorms)
 - Remnant Tropical
- Let the data talk to use

Colorado Water Conservation Board Colorado Division of Water Resources CO-NM REPS Colorado-New Mexico Regional Extreme Precipitation Study

Probable Maximum Precipitation – Storm List

- Storm Search and Storm List
 - Complete a storm search to identify the most significant storms that could have occurred over the region where storms are transpositionable
 - \circ $\:$ Identify storms used in HMRs and other PMP studies
 - Identify the most significant flood events that have occurred in region
 - Identify extreme rainfall-producing storm types and seasons
 - Use SPAS to analyze
- Storm must have similar meteorology/topography to be considered transpositionable

Probable Maximum Precipitation – Storm Search

DNR

New-Mexico Office of the State Engineer

Local storm locations

General storm locations

Tropical storm locations

Probable Maximum Precipitation - Major Tasks

Probable Maximum Precipitation – DAD Table

Storm 1600 - July 31 (0600 UTC) - August 6 (0500 UTC), 1978															
MAXIMUM AVERAGE DEPTH OF PRECIPITATION (INCHES)															
Ama (m;2)	Duration (hours)														
Area (mi ⁻)	1	2	3	4	5	6	12	18	24	36	48	72	96	120	Total
0.3	4.67	9.10	13.31	16.77	19.06	20.83	29.15	29.96	30.91	42.39	43.51	48.82	48.82	48.97	48.97
1	4.63	9.02	13.20	16.62	18.90	20.66	28.90	29.70	30.65	42.04	43.16	48.43	48.43	48.43	48.43
10	4.53	8.81	12.90	16.26	18.45	20.19	28.24	29.06	29.95	41.06	42.17	47.34	47.34	47.34	47.34
25	4.41	8.58	12.57	15.83	17.99	19.67	27.51	28.30	29.19	40.03	41.12	46.16	46.16	46.16	46.16
50	4.24	8.26	12.09	15.23	17.30	18.93	26.47	27.25	28.12	38.52	39.59	44.52	44.54	44.54	44.54
100	3.92	7.64	11.19	14.08	15.99	17.52	24.48	25.24	26.11	35.65	36.72	41.54	41.58	41.58	41.58
150	3.63	7.04	10.33	12.97	14.70	16.16	22.53	23.38	24.25	32.85	34.04	38.80	38.86	38.86	38.86
200	3.40	6.52	9.57	12.00	13.56	14.97	20.76	21.73	22.54	30.36	31.65	36.45	36.56	36.56	36.56
300	3.03	5.71	8.40	10.48	11.76	13.05	17.90	19.16	19.91	26.30	27.95	32.67	32.85	32.85	32.85
400	2.78	5.10	7.53	9.33	10.52	11.63	15.91	17.28	18.11	23.50	25.38	29.93	30.12	30.12	30.12
500	2.59	4.65	6.87	8.44	9.56	10.54	14.34	15.87	16.74	21.54	23.79	27.81	28.04	28.04	28.04
1,000	2.03	3.42	5.04	6.02	6.85	7.58	10.35	11.91	12.74	16.59	18.95	21.59	21.79	21.79	21.79
2,000	1.39	2.30	3.45	4.04	4.69	5.20	7.46	8.78	9.66	12.55	14.65	16.35	16.51	16.51	16.51
5,000	0.70	1.20	1.65	2.05	2.38	2.73	4.57	5.74	6.33	8.34	9.82	10.87	10.97	10.97	10.97
10,000	0.46	0.82	1.08	1.35	1.65	1.85	2.76	3.44	4.52	6.21	6.80	7.71	7.71	7.71	7.71
20,000	0.27	0.50	0.67	0.84	1.01	1.14	1.74	2.21	2.84	4.01	4.41	5.11	5.14	5.14	5.14
25,872	0.22	0.40	0.54	0.67	0.82	0.92	1.39	1.77	2.37	3.38	3.75	4.38	4.42	4.42	4.42

Colorado Water Conservation Board Colorado Division of Water Resources

CO-NM REPS

Colorado-New Mexico Regional Extreme Precipitation Study

Texas 24-hr 100-yr Precip Frequency

Probable Maximum Precipitation - Major Tasks

- Each storm adjusted and specific transposition limits applied
- In-place maximization
- Differences in moisture
- Difference in topography and all other precipitation producing processes
 IPMF x MTF x GTF = Total Adjustment Factor
- Derived for each grid for each storm
- Greatest depth at each grid by storm type by duration becomes PMP for that grid

Texas Local Storm PMP 6-hour 10-square mile

Texas Tropical Storm PMP 24-hour 100-sq mile

Texas General Storm PMP 72-hour 1000-sq mile

Coverage of HMRs over Texas PMP Domain

Texas PMP Compared to HMR 51 Values

Average PMP Percent Change from HMR 51 (by transposition zone)										
Duration	Area	Zone 3	Zone 4	Zone 5	Zone 7	Zone 8	Zone 9	Zone 10	Zone 11	Zone 12
6-hour	10-sqmi	-18%	-10%	-11%	-31%	-16%	-15%	-28%	-28%	-20%
6-hour	200-sqmi	-14%	-8%	-3%	-30%	-15%	-11%	-31%	-27%	-19%
6-hour	1,000-sqmi	-13%	-7%	-11%	-35%	-20%	-12%	-37%	-33%	-23%
6-hour	5,000-sqmi	-10%	-5%	3%	-39%	-15%	-2%	-51%	-47%	-20%
6-hour	10,000-sqmi	-18%	-14%	-3%	-40%	-23%	-7%	-47%	-42%	-27%
6-hour	20,000-sqmi	-19%	-11%	-7%	-38%	-25%	-9%	-49%	-38%	-30%
12-hour	10-sqmi	-9%	-4%	-3%	-34%	-18%	-7%	-37%	-33%	-21%
12-hour	200-sqmi	-9%	-2%	-5%	-26%	-10%	-5%	-29%	-24%	-11%
12-hour	1,000-sqmi	-18%	-10%	-10%	-25%	-14%	-8%	-25%	-21%	-13%
12-hour	5,000-sqmi	-4%	0%	9%	-29%	-12%	9%	-41%	-34%	-16%
12-hour	10,000-sqmi	-4%	2%	11%	-35%	-10%	11%	-44%	-37%	-16%
12-hour	20,000-sqmi	-7%	0%	7%	-28%	-11%	5%	-43%	-33%	-15%
24-hour	10-sqmi	-9%	-3%	-4%	-33%	-15%	-4%	-33%	-27%	-15%
24-hour	200-sqmi	-10%	-2%	-8%	-18%	-2%	-4%	-15%	-10%	2%
24-hour	1,000-sqmi	-10%	-3%	-16%	-10%	4%	-7%	-3%	2%	13%
24-hour	5,000-sqmi	-13%	-3%	-2%	-17%	-7%	2%	-12%	-8%	-1%
24-hour	10,000-sqmi	-4%	8%	8%	-17%	2%	12%	-29%	-20%	3%
24-hour	20,000-sqmi	7%	18%	21%	-9%	11%	21%	-36%	-14%	12%
48-hour	10-sqmi	-8%	-5%	-9%	-23%	-5%	-8%	-22%	-16%	-3%
48-hour	200-sqmi	4%	10%	-4%	-5%	15%	6%	-3%	4%	19%
48-hour	1,000-sqmi	-1%	6%	-4%	-2%	13%	2%	1%	8%	21%
48-hour	5,000-sqmi	-12%	-5%	4%	-15%	-4%	4%	-10%	-7%	1%
48-hour	10,000-sqmi	-9%	1%	4%	-22%	-5%	7%	-21%	-19%	-6%
48-hour	20,000-sqmi	-2%	8%	12%	-16%	2%	14%	-30%	-18%	1%
72-hour	10-sqmi	-14%	-9%	-15%	-25%	-10%	-13%	-25%	-19%	-8%
72-hour	200-sqmi	-6%	0%	-9%	-10%	5%	-3%	-6%	-1%	12%
72-hour	1,000-sqmi	-10%	-4%	-1%	-10%	2%	0%	-4%	1%	11%
72-hour	10,000-sqmi	-20%	-8%	4%	-22%	-9%	3%	-18%	-14%	-6%
72-hour	10,000-sqmi	-23%	-11%	-1%	-27%	-11%	-1%	-29%	-25%	-9%
72-hour	20,000-sqmi	-20%	-10%	-4%	-25%	-13%	-4%	-34%	-23%	-12%

Texas PMP Compared to HMR 55A Values

Percent Change from HMR 55A PMP												
			1-hour	6-hour	24-hour	72-hour						
Point	Latitude	Longitude	Zone	1-mi ²	10-mi ²	10-mi ²	10-mi ²					
1	29.50°	-104.00°	1	-54.2%	-41.0%	-44.1%	-38.0%					
2	29.50°	-103.25°	1	-53.0%	-38.6%	-40.1%	-33.8%					
3	30.50°	-104.50°	1	-54.9%	-41.4%	-40.9%	-35.0%					
4	30.50°	-103.25°	7	-51.2%	-31.1%	-33.1%	-26.3%					
5	31.50°	-105.75°	6	-42.6%	-20.0%	-17.1%	-8.9%					
6	31.50°	-104.50°	6	-53.3%	-38.9%	-36.9%	-30.3%					
7	31.50°	-103.25°	7	-65.3%	-44.4%	-46.0%	-37.8%					
8	32.50°	-107.00°	6	-38.9%	-25.0%	-28.2%	-22.1%					
9	32.50°	-105.75°	6	-51.7%	-31.1%	-27.9%	-21.3%					
10	32.50°	-104.50°	10	-53.9%	-38.6%	-34.6%	-27.4%					
11	32.50°	-103.25°	7	-51.9%	-21.4%	-19.7%	-10.8%					
12	33.25°	-107.50°	6	-38.2%	-25.7%	-29.8%	-24.3%					
13	33.75°	-103.25°	11	-52.3%	-37.1%	-31.0%	-22.6%					
14	35.00°	-104.00°	10	-52.8%	-27.5%	-35.1%	-26.7%					
15	35.00°	-103.25°	11	-53.8%	-39.0%	-34.7%	-24.7%					
16	36.25°	-104.00°	10	-45.1%	-33.9%	-38.7%	-31.2%					
17	36.25°	-103.25°	10	-33.1%	-22.0%	-30.4%	-21.6%					

Implementation– Texas CEQ Perspective

- Identified GeoProcessing Service as the ideal solution
- Agency had never implemented a GeoProcessing Service so there was no assistance or resources to help
- Required server access and permissions
- Dam Safety Program has a person with extensive GIS experience and a willingness to learn coding
- We became the "guinea pig" for the agency for program staff to get server access with permissions to publish.
- Had to learn python & how to publish GeoProcessing Service

Implementation– Texas CEQ Perspective

- Sought assistance from Applied Weather Associates and from ESRI
- Tested all possible scenarios, especially after each change
- Had to identify the proper projections to avoid differences in the results
- Wrote user guide
- Initially set Jan. 1, 2017, for availability of PMP tool
- Took 5 months to develop and publish
- Released at a Dam Owner workshop on Jan. 25, 2017

• Set up an e-mail for questions or problems

Colorado Water Conservation Board Colorado Division of Water Resources CO-NM REPS Colorado-New Mexico Regional Extreme Precipitation Study

Results- Texas CEQ Perspective

- One large dam was found to be adequate without modification, saving \$1.5 million
- One dam with a small drainage area had a cost savings of \$75,000 to \$100,000
- A new dam had a cost savings of \$140,000
- One dam had a cost savings of about \$100,000, which was about half the project costs
- Another has a cost savings of \$100,000, which was about 10% of the total costs

Results– Texas CEQ Perspective

- One larger project, already approved by TCEQ, was checked and found that the PMP went up, resulting in a rise of 2 feet
- A new dam was found to have virtually no reduction in dam height, essentially no cost savings

CO-NM REPS Colorado-New Mexico Regional Extreme Precipitation Study

Next Steps – Texas CEQ Perspective

- We are developing a web map to publish on our server, where individuals or companies without GIS capabilities can create a watershed and use the tool
- Should be available soon

CO-NM REPS Colorado-New Mexico Regional Extreme Precipitation Study

Colorado-New Mexico PMP Domain

100 150 200 250 300

0 50

Miles

PMP Analysis Domain with Overlapping Studies

Colorado-New Mexico PMP

- High elevation rainfall/PMP
 - Rain vs snow
 - Lack of observed rainfall events
- Wide variety of meteorology/topography
- Unique consortium of participants/reviewers
 - Many different experiences/backgrounds/ideas
- Unique combination of tasks
 - Leverage off other tasks' work
 - Coordination between tasks

Question?

Colorado Water Conservation Board Colorado Division of Water Resources CO-NM REPS Colorado-New Mexico Regional Extreme Precipitation Study

New-Mexico Office of the State Engineer

