Calculating Arizona Statewide PMP Using The PMP Evaluation Tool

Bill Kappel, Senior Meteorologist/Vice President Ed Tomlinson, PhD, Chief Meteorologist/President *Applied Weather Associates, Monument, CO* <u>www.appliedweatherassociates.com</u>

> Michael Johnson, PhD Arizona Dept .of Water Resources

ASDO Dam Safety 2013 September 8-12, 2013 Providence, RI

Reasons For Study-AZ

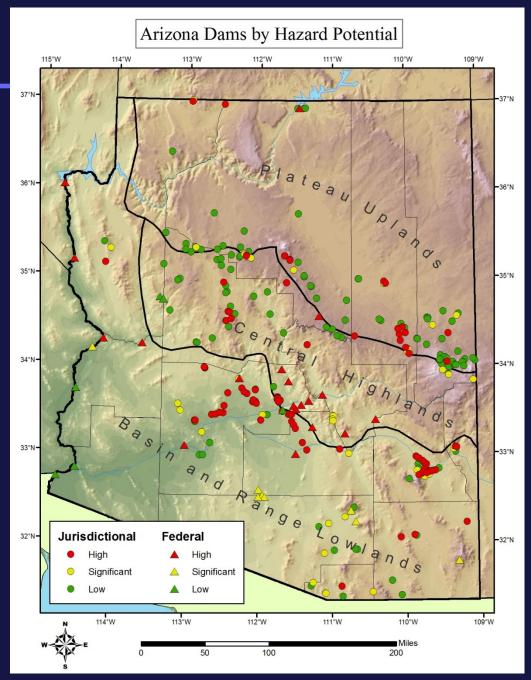
Deficient Dams: 29 state-regulated

>\$75,000,000 estimated upgrade costs

State-of-practice data and understanding

Regulator/Owner confidence in results/applications

Jurisdictional Dams with PMF-related Deficiencies teau a 36°N -36°N Uplan 90 35°N -35°N ighlands 34°N-8 asin 33°N--33°N and Range Lowlands 32°N--32°N 114°W 112°W 109°W 113°W 111°W 110°W 100 200


Reasons For Study

"Hazard creep"

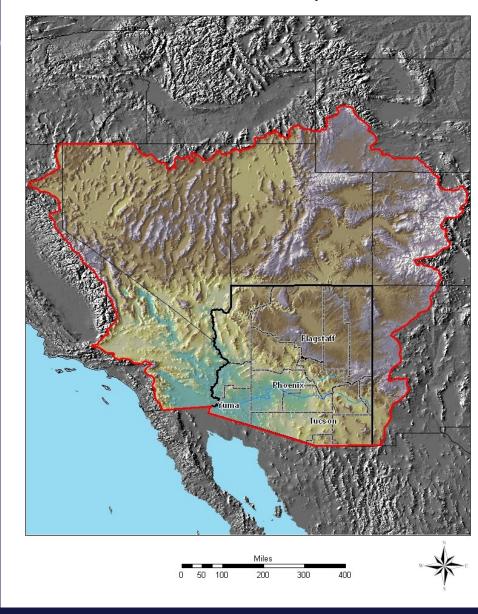
In past 3 years: 17 dams reclassified

More than half deficient

156 more could be reclassified in the future

Cooperative Efforts-AZ

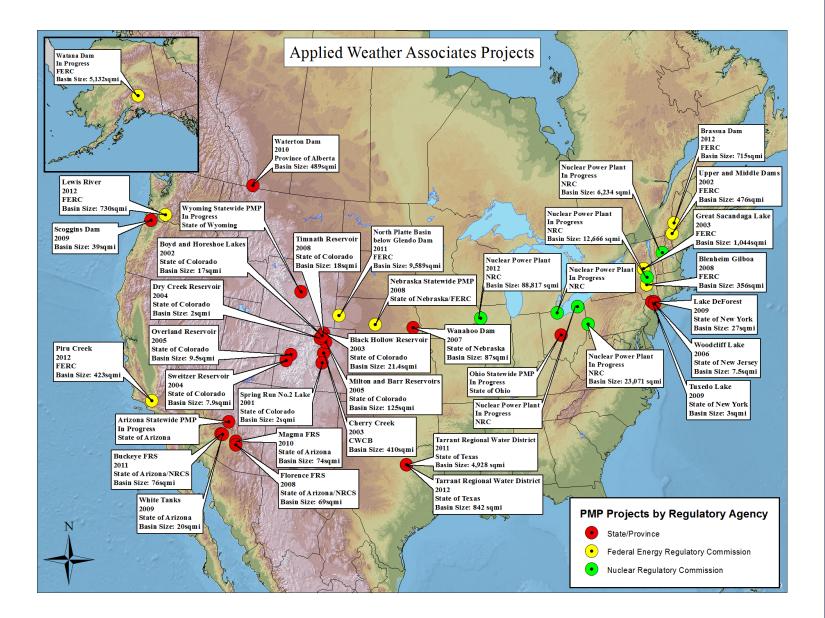
- Funding/Cooperating Partners
 - Arizona Department of Water Resources
 - Arizona Game & Fish Department
 - FCD (Maricopa, Navajo)
 - NRCS
 - FEMA (NDSP State Assistance Grant)
- Working together all partners achieve desired results
- State/Users benefit at a reduced cost


Expected Project Benefits

- Reduced Construction Costs
 - New Dams
- Reduced Rehabilitation Costs
 - Remove need for rehabilitation
 - Millions in cost savings during useful lifetime
- Reclaimed Opportunity Costs
 - Flood protection
 - Storage capacities
 - Operational availability

HMR 49 Boundary

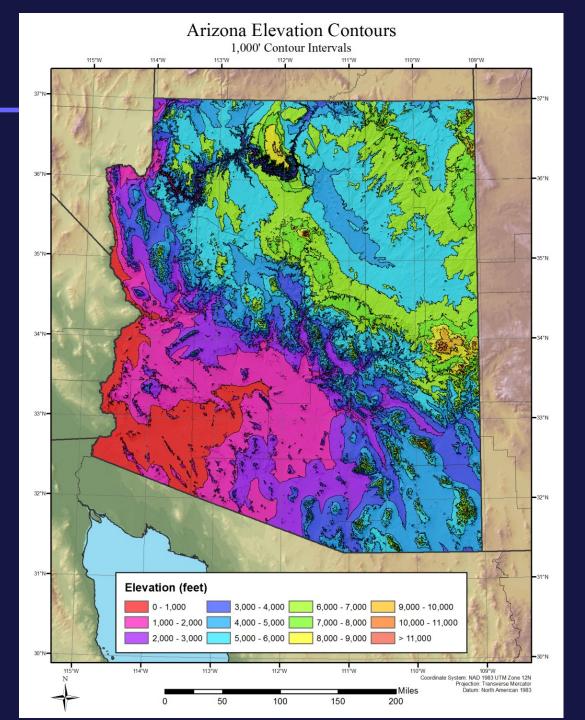
HMR 49 Domain



Why Does HMR 49 Need Updating?

- HMR 49
 - -The oldest of the HMRs currently in use
 - -Based on outdated methods and techniques no longer used
 - Few Storms used
 - No DADs

Not Our First PMP Study


How Did We Compute PMP?

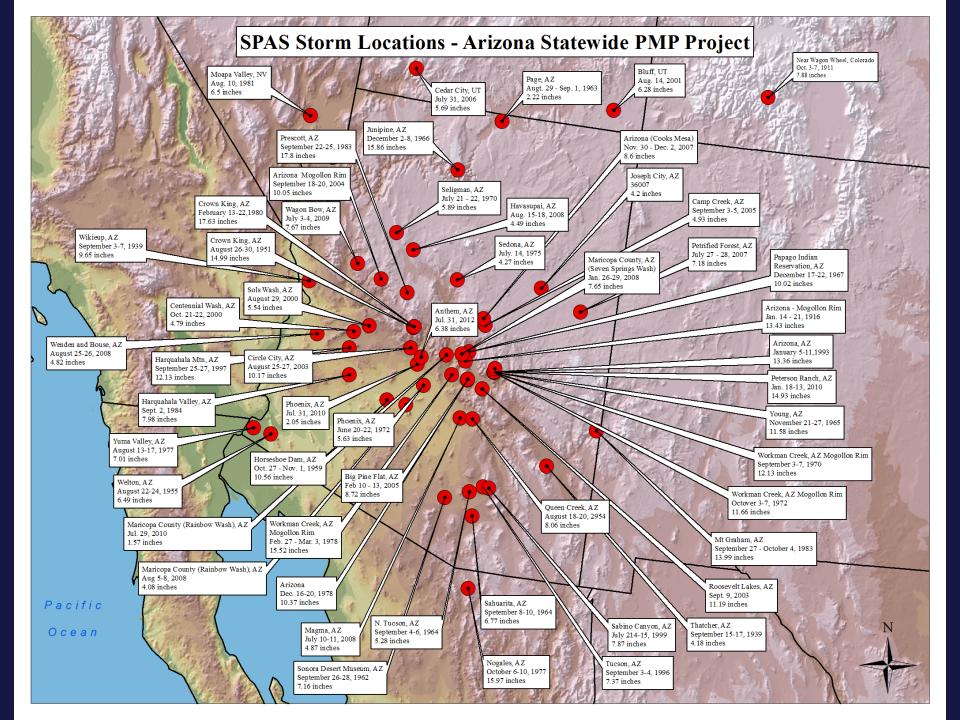
Storm Based Approach

- Similar to HMR/WMO procedures
- Deterministic
- Maintain consistency with AWA PMP studies
 - Improvements in understanding
 - Expanded data base
 - Use of computer technologies
 - Use of NEXRAD weather radar
 - Better understanding of meteorology

Elevations Across Arizona, 1,000 Foot Interval

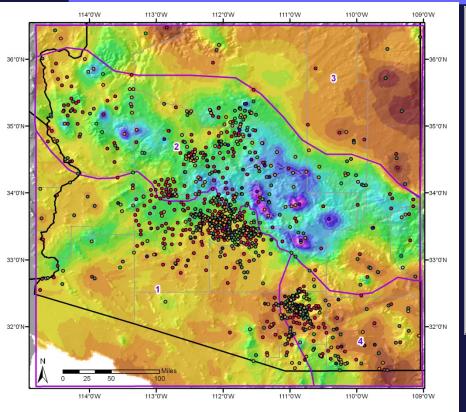
Updating PMP-What Did We Do

Storm Search


- Update the storm database
- Identify the most extreme rainfall events
 - Throughout the state
 - Surrounding regions
- Identify Storm Types
 - Local Convective
 - Remnant Tropical (Arizona only)
 - General Frontal

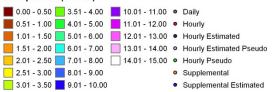
Updating PMP-Storm Search

- 1000's of storms initially captured
- Grouped by storm type
 - Local Convective, tropical, Frontal
 - Location
 - Duration
- Storms used in HMRs included
- Ensure no potential PMP storms missed
- Storms must be transpositionable
 - Meteorological and topographical similar characteristics

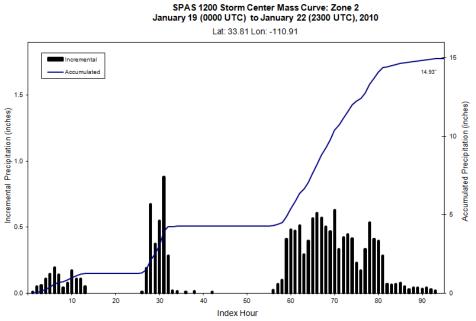


Updating PMP-Storm Analysis

- Storm Precipitation Analysis System (SPAS)
 - Depth-Area-Duration
 - Mass Curves
 - Storm Isohyetal
 - Hourly (5-minute rainfall) at 1/3rd square mile
 - Dynamically adjusted radar and/or basemap for spatial interpolation

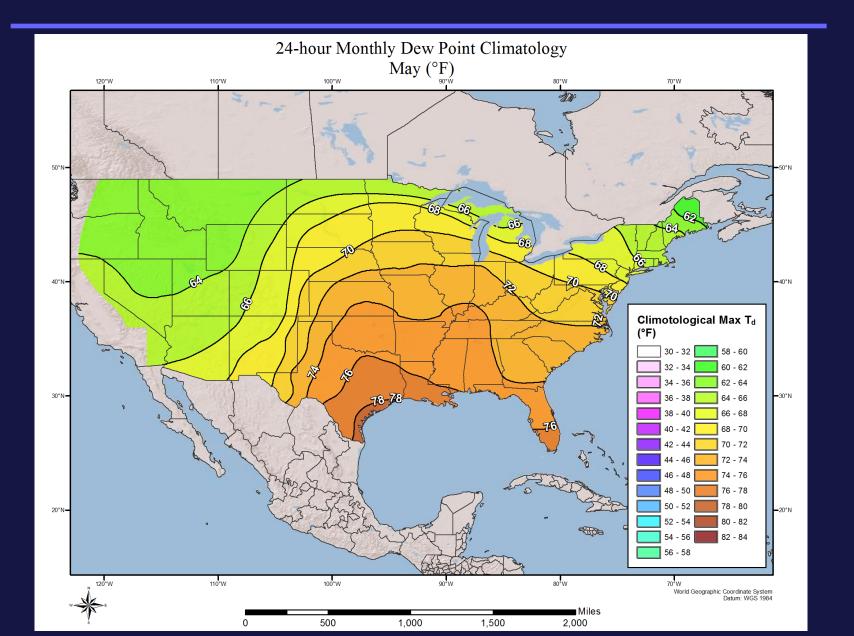


SPAS Storm Analysis Results

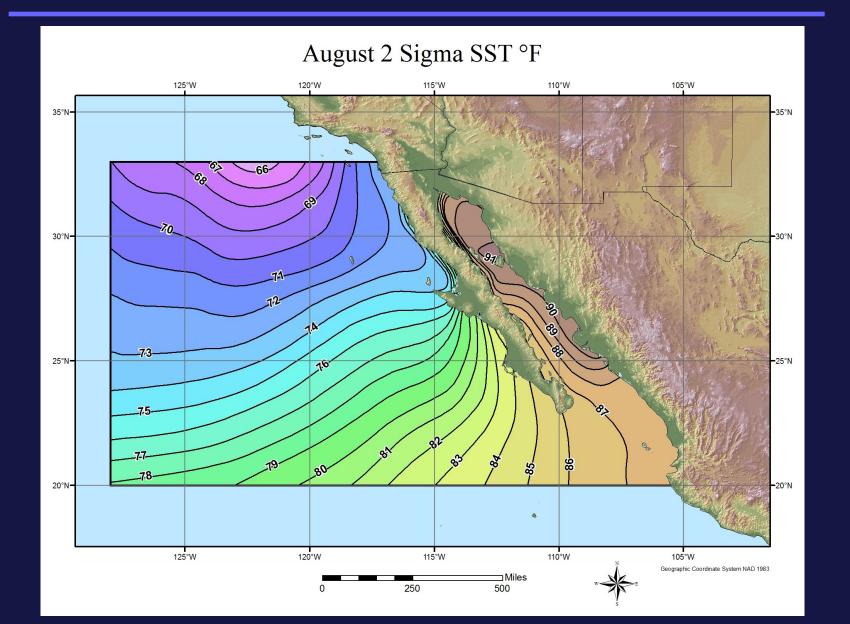


Hourly and daily station data extraction information: SPAS storm number: 1200 Begin: 01/19/2010 0000Z End: 01/22/2010 2359Z Domain: 36.5 -114.8 31.1 -109.0

Storm 1200 - January 19, 2010 (0000 UTC) - January 22, 2010 (0400 UTC) MAXIMUM AVERAGE DEPTH OF PRECIPITATION (INCHES)


	Duration (hours)										
Area (mi ²)	1	3	6	12	18	24	36	48	72	95	Total
0	1.15	2.33	3.8	6.03	8.09	9.98	10.6	10.99	13.66	14.93	14.93
1	1.1	2.26	3.71	5.81	7.92	9.72	10.39	10.7	13.43	14.57	14.57
10	1.04	2.09	3.64	5.75	7.56	9.1	9.94	10.27	12.95	14.52	14.52
25	0.96	2.01	3.54	5.56	7.31	8.7	9.62	9.89	12.53	13.99	13.99
50	0.88	1.97	3.39	5.38	7.02	8.46	9.33	9.51	12.16	13.44	13.44
100	0.85	1.89	3.31	5.09	6.84	8.05	8.98	9.15	11.67	12.82	12.82
150	0.82	1.83	3.21	4.86	6.57	7.95	8.79	8.9	11.34	12.44	12.44
200	0.8	1.79	3.14	4.72	6.53	7.7	8.56	8.73	11.18	12.18	12.18
300	0.73	1.72	3.02	4.58	6.26	7.57	8.36	8.52	10.89	11.79	11.79
400	0.72	1.66	2.94	4.48	6.04	7.36	8.14	8.31	10.6	11.51	11.51
500	0.71	1.61	2.87	4.4	5.76	7.1	7.97	8.12	10.29	11.28	11.28
1,000	0.62	1.34	2.34	4	5.53	6.37	7.05	7.51	8.75	10.48	10.48
2,000	0.52	1.29	2.28	3.6	4.95	5.93	6.64	6.64	8.51	9.78	9.78
5,000	0.43	1.08	1.93	2.92	4.4	5.1	5.78	5.78	7.49	8.6	8.60
10,000	0.39	0.9	1.59	2.77	3.78	4.39	5.04	5.21	6.57	7.58	7.58
20,000	0.28	0.71	1.29	2.32	2.88	3.53	4.28	4.59	5.51	6.37	6.37
40,231	0.19	0.53	1.02	1.74	2.35	2.77	3.23	3.43	4.36	4.74	4.74

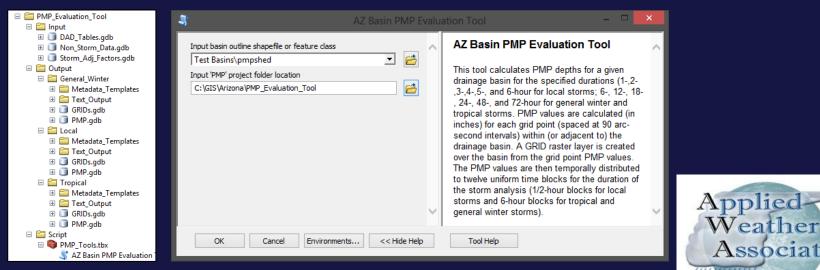
How Did We Compute PMP?


- Each storm maximized
 - Make it as big as physically possible
 - Storm rainfall = dynamics + moisture
 - Can't quantify dynamics, can quantify moisture
 - Assume most efficient storm dynamics
 - Only moisture varies
 - Use surface dew points or SST for maximization
- Determine moisture which fed the storm = fuel
- Ratio: climatological maximum moisture to actual storm moisture = in-place maximization factor

Dew Point Map, May 24-hr 100-yr

Sea Surface Temp, August +2-sigma

How Did We Compute PMP?


- PMP on a ~2.5mi² grid
 - 64,103 grid cells-that's a lot of data!
- Move maximized storms to each grid
- Account for differences in moisture and elevation
- Calculate the Orographic Transposition Factor (OTF)
 - Uses Precip Frequency-NOAA Atlas 14
 - Difference between source and target location
- OTF-Quantifiable/Reproducible
 - •Replaces HMR SSM, K-Factor
 - Highly subjective
 - Not reproducible
- Results in total adjustment factor
- Apply to the DAD values

PMP Evaluation Tool (PET)

- Calculates gridded PMP for a user-defined drainage basin
- Custom Python-based scripted tool
 - Designed to be used within the ArcGIS environment
 - Flexible for future updates/enhancements
- Iterates through a storm database
 - Currently 91 maximized historical DAD tables
 - Adjusted to each grid cell
- Produces temporally distributed PMP output in both vector and raster GIS file formats for the basin spatial extent

Associates

Summary

- Storm based and reproducible
 ✓ Ability to consider site-specific characteristics
- Higher confidence in results/data
- Significant cost savings
 - Properly sized spillways
- PMP study produces updated/reliable values
 - PMP values for any point within Arizona
 - Developed using the most current methods and data available

QUESTIONS

Bill Kappel, Applied Weather Associates 719-488-4311

billkappel@appliedweatherassociates.com

www.appliedweatherassociates.com

Michael Johnson, ADWR, Assistant Director & Chief Engineer 602-771-8659

mjjohnson@azwater.gov

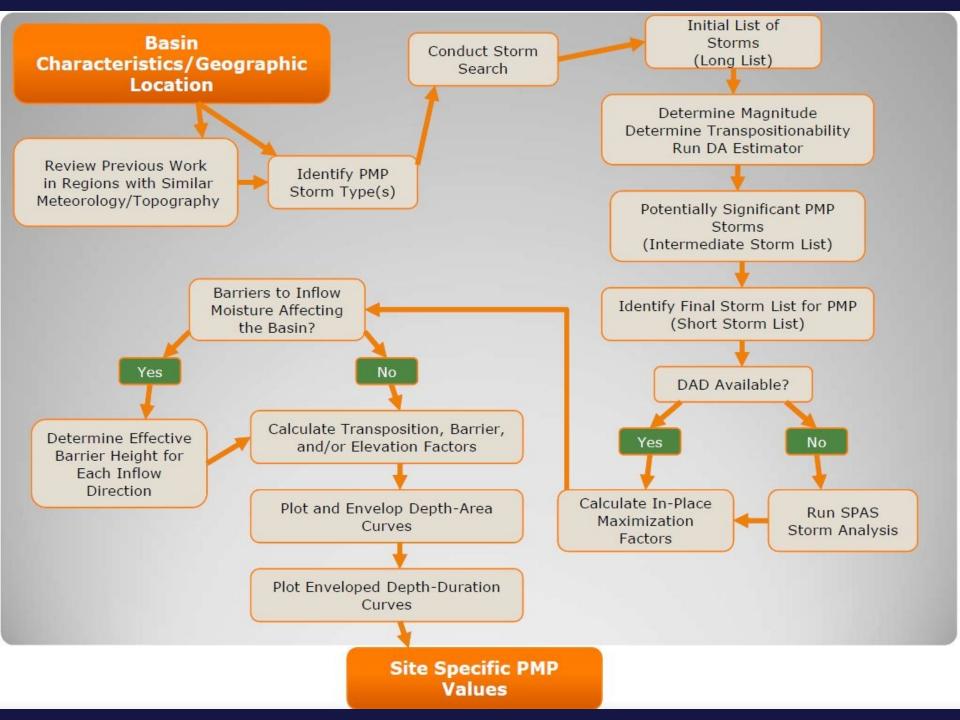
Arizona Statewide PMP Study

A multi-agency study to improve understanding of public risk and reduce infrastructure costs

Presentation Outline

- Reason for the study
- Regulator Perspective
- PMP Development Process
- Storm based approach
 - 49 new storms analyzed!
 - Updated dew point/SST climatologies
 - Explicitly Address orographics
- Results/findings
 - Quantifiable/Reproducible
 - No black box

2008 Feasibility Study

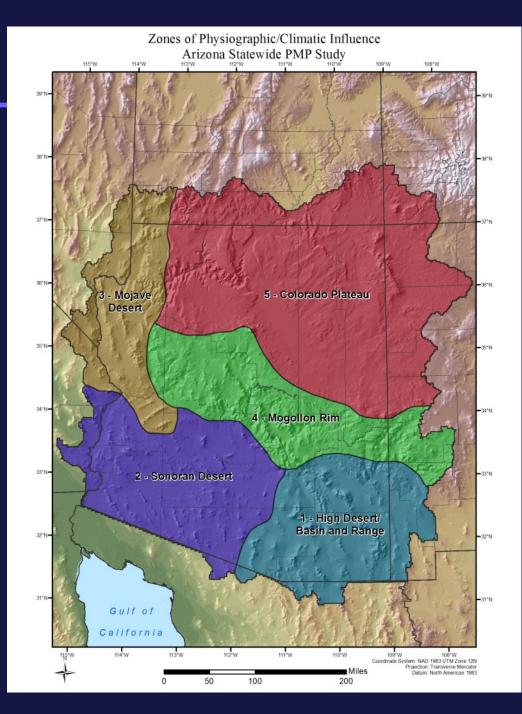

• HMR 49 is overdue for updating

• HMR 49 PMP values are unreliable

 HMRs developed using similar methods have been replaced

Study Background

- Arizona kicked-off Spring 2009, Wyoming Spring 2011
- Storm Based Approach
- Deterministic, but of course there is uncertainty
- All-season PMP
 - 1-hr to 72-hr values
 - ~2.5-mi² grid across orographically influenced regions
- Wyoming gets cool-season PMP, rain on snow


Unique Issues in Arizona

- Terrain and orographics
- How much can it rain at high elevations?
- Lack of data for large areas
- Rain on snow
- Transition between climate regions

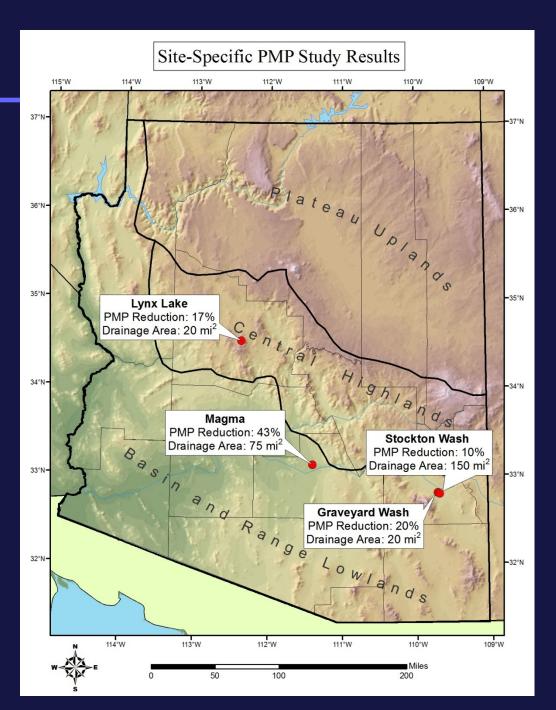
Transposition Zones

Provide spatial transposition constraints for each storm

- 1. High Desert/Basin and Range
- 2. Sonoran Desert
- 3. Mojave Desert
- 4. Mogollon Rim
- 5. Colorado Plateau

Summary

- HMR 49
 - Out of date
 - Inadequate for use in deriving PMP values
- Hydrological implementation manual
 - For application of the PMP values
 - Based on state regulator's needs
- PMP study produces updated/reliable values for PMF modeling
 - PMP values for any point within Arizona
 - Developed using the most current methods and data available


Problems with HMR 49 – overly conservative?

1996: Lynx Lake Dam, cost savings to AGFD

2008: Magma FRS, > \$5M cost savings

2008: NRCS-Funded Safford Regional PMP

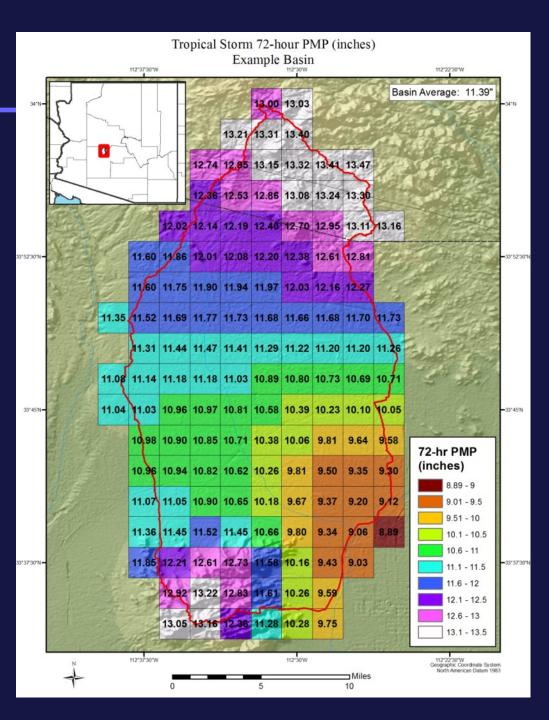
2009: Florence Dam, > \$5M cost savings

Background

- HMR 49-Published in 1977
 - The oldest of the HMRs currently in use
 - Based on outdated methods and techniques
 - Subsequently been improved
 - Better understanding of meteorology
 - Updated datasets
 - Improved spatial analysis
 - Methods and techniques updated in newer HMRs
- Major issues with HMR 49
 - Lack of storm data used to develop the PMP values
 - Only a handful of storms were investigated
 - None were analyzed using individual storm Depth-Area-Duration (DAD) values
 - Covers a widely varying region
 - Climatologically/Topographically

Deliverables for Arizona

- Updated storm database
 - 51 new storm analyses using SPAS
 - 3 PMP storm types
- Enormous amount of data
- PMF hydrologic implementation parameters
 - Temporal distributions
 - Basin specific distributions
- One PMP process using state-of-the-science understanding and techniques

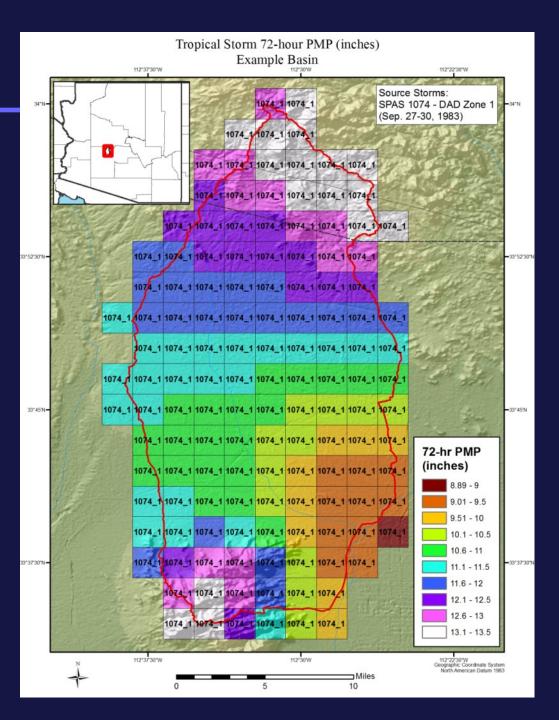


Example PMP Results

72-hour tropical storm PMP values

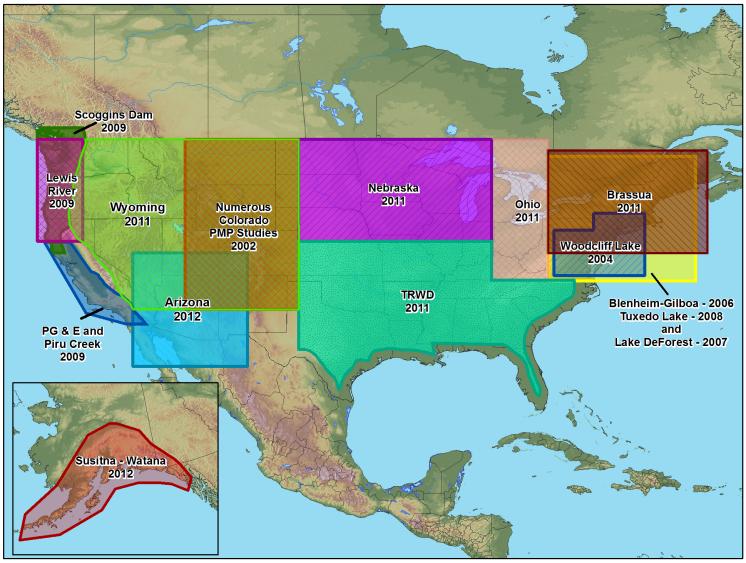
Provide basin, sub basin, or grid values/average

Associated with storm type temporal timing



Example PMP Results

72-hour tropical storm PMP


Source storm ID by SPAS storm number

Allows for back calculation and verification

AWA Storm Search Domains

Storm Search Domains

