OHIO STATEWIDE PMP STUDY November 14, 2012

PRESENTERS
ODNR – Hung Thai
AWA – Bill Kappel
STANTEC – Rob Kirkbride

ODNR is the largest dam owner in Ohio
 189 impoundments

DIVI	<u>ISION</u>	<u>TOTAL</u>	CLASS <u>I</u>	CLASS <u>II</u>	CLASS III	CLASS <u>IV</u>	ABAN.	<u>EXEMPT</u>	<u>UNCLASS</u>
For	restry	16	4	3	2	1	3	3	0
M	IRM	8	0	1	0	1	5	1	0
N	IAP	8	0	1	0	0	1	6	0
Pá	arks	67	39	16	4	1	2	5	0
S	WR	1	1	0	0	0	0	0	0
Wil	ldlife	89	12	9	22	13	7	22	4
TO	<u>TAL</u>	<u>189</u>	<u>56</u>	<u>30</u>	<u>28</u>	<u>16</u>	<u>18</u>	<u>37</u>	<u>4</u>

ODNR is the largest dam owner in Ohio
 114 dams regulated by Ohio Dam Safety

DIVISION	<u>TOTAL</u>	CLASS I	CLASS II	CLASS III
Forestry	9	4	3	2
MRM	1	0	1	0
NAP	1	0	1	0
Parks	59	39	16	4
SWR	1	1	0	0
Wildlife	43	12	9	22
<u>TOTAL</u>	114	<u>56</u>	<u>30</u>	<u>28</u>

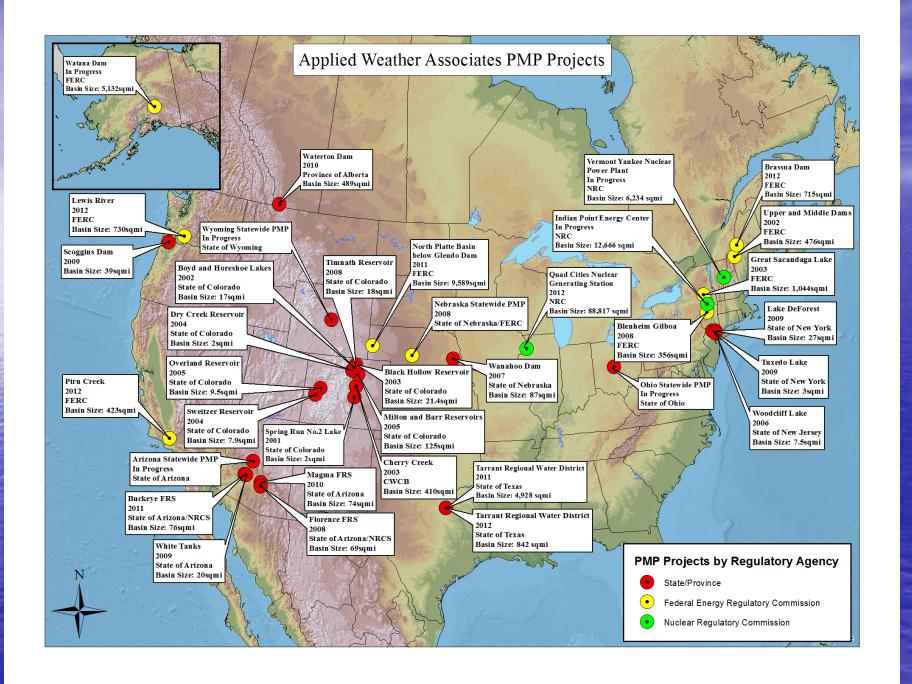
 Regulated dams that do not have sufficient capacity to safely pass the required design flood

<u>CLASS I</u>	<u>Under</u> <u>Capacity</u>	CLASS II	<u>Under</u> <u>Capacity</u>	CLASS III	<u>Under</u> <u>Capacity</u>
<u>56</u>	<u>28 (~50%)</u>	<u>30</u>	<u>9 (~30%)</u>	<u>28</u>	<u>7(~25%)</u>

Capital improvements to Indian Lake and Lake
 Loramie Dams – both are Class 1 in western Ohio

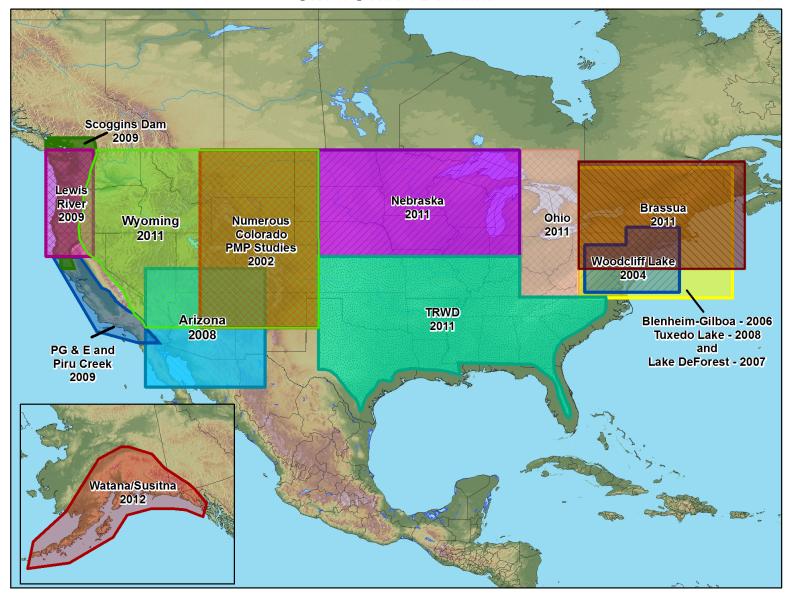
	Indian Lake Dam	Lake Loramie Dam
<u>Height</u>	<u>16.4</u>	<u>23.3</u>
<u>Length</u>	<u>3960</u>	<u>6260</u>
<u>Drainage Area</u>	<u>98.32</u>	<u>77.7</u>
Appr. % of PMF	<u>50</u>	<u>40</u>

- Initial contract agreement:
 - Site specific study for each dam
 - Western half of the state
 - Storms were analyzed and allowed for statewide study
 - Cost remained same!


- Overall team included:
 - Stantec primary consultant
 - Applied Weather Associates subconsultant
 - Board of Review: 3 subject-matter experts
 - ODNR
 - FERC

Review and approval process:

- Major Tasks for PMP Development:
 - Storm based approach
 - Similar to NWS HMR 51 and WMO
 - All previous AWA PMP studies



- Major Tasks for PMP Development:
 - Storm Search
 - Biggest storms of record in wide region
 - Many storms already known from previous work
 - Short list of 45 storms
 - 10 new storms analyzed
 - PMP-type storms
 - MCC and synoptic

Storm Search Domains

Ohio Short Storm List Locations 105°W 100°W 75°W BEAULIEU, MN AWA Storm #14 7/18/1909 IRONWOOD, MI AWA Storm #15 HAYWARD, WI 7/21/1909 AWA Storm #34 FOREST CITY, MN 8/28/1941 IDA GROVE, IA AWA Storm #96 AWA Storm #70 6/20/1983 MINNEAPOLIS, MN 8/30/1962 AWA Storm #102 7/23/1987 BIG RAPIDS, MI GRANT TOWN SHIP, NE BOYDEN, IA AWA Storm #100 AWA Storm #30 AWA Storm #20 HOKAH, MN 9/9/1986 9/17/1926 6/3/1940 AWA Storm #121 8/18/2007 STANTON, NE LARRABEE, IA WOOSTER, OH AWA Storm #3 AWA Storm #40 AWA Storm #78 COOPER, MI 6/10/1944 9/10/1891 DUBUQUE, IA 7/4/1969 AWA Storm #18 AWA Storm #127 - 100 8/31/1914 GREELEY, NE JEFFERSON, OH 7/27/2011 AWA Storm #5 AWA Storm #1 DUMONT, IA 6/4/1896 9/10/1878 WOODBURN, IA AWA Storm #57 (•) AWA Storm #9 DAVID CITY, NE 6/25/1951 NEWCOMERSTOWN, OH 8/24/1903 AWA Storm #72 AWA Storm #29 6/24/1963 AURORA COLLEGE, IL 8/6/1935 AWA Storm #112 BONAPARTE, IA EDGERTON, MO 7/16/1996 AWA Storm #10 HOLT, MO AWA Storm #75 WELDA, KS AWA Storm #47 6/10/1905 7/18/1965 AWA Storm #120 6/18/1947 6/30/2007 COLLEGE HILL, OH AWA Storm #71 COUNCIL GROVE, KS 6/3/1963 AWA Storm #58 PARIS WATERWORKS, IN 7/9/1951 AWA Storm #63 COLLINSVILLE, IL COLE CAMP, MO 6/27/1957 AWA Storm #45 NEOSHA FALLS, KS HALLETT, OK AWA Storm #44 8/12/1946 AWA Storm #19 AWA Storm #32 8/12/1946 9/12/1926 ENID, OK WARNER PARK, TN KELSO, MO 9/2/1940 AWA Storm #83 AWA Storm #126 AWA Storm #59 10/10/1973 4/30/2010 8/11/1952 MOUNDS, OK 35°N-AWA Storm #37 5/16/1943 BIG FORK, AR CHEYENNE, OK AWA Storm #94 AWA Storm #25 WARNER, OK 12/1/1982 4/3/1934 MEEKER, OK AWA Storm #35 AWA Storm #13 DOUGLASVILLE, GA 5/6/1943 10/19/1908 AWA Storm #125 9/19/2009 CLYDE, TX AWA Storm #92 LOUISVILLE, MS 10/12/1981 AWA Storm #88 4/12/1979 Atlantic INDEX, AR AWA Storm #31 6/30/1940 Ocean 100°W 95°W 90°W

100

200

300

400

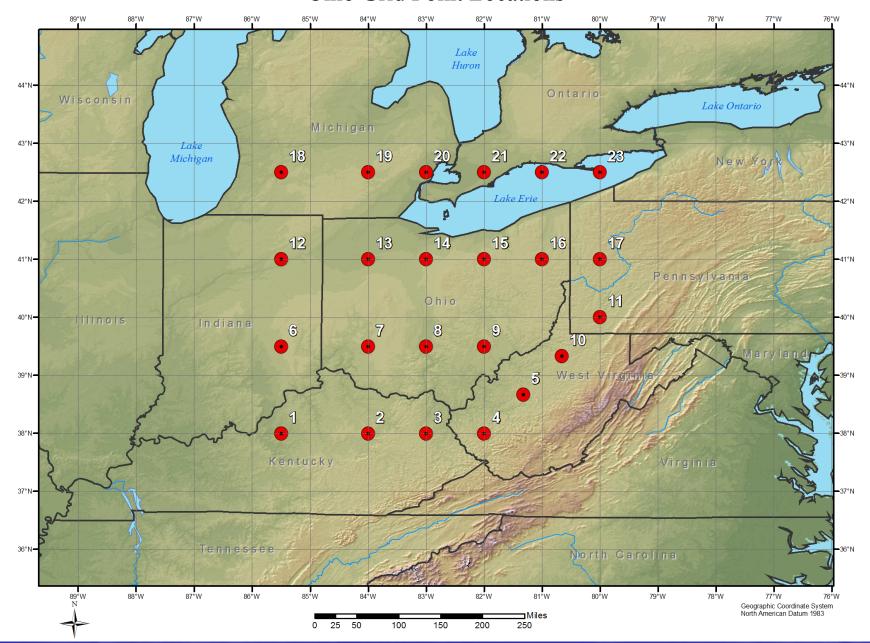
85°W

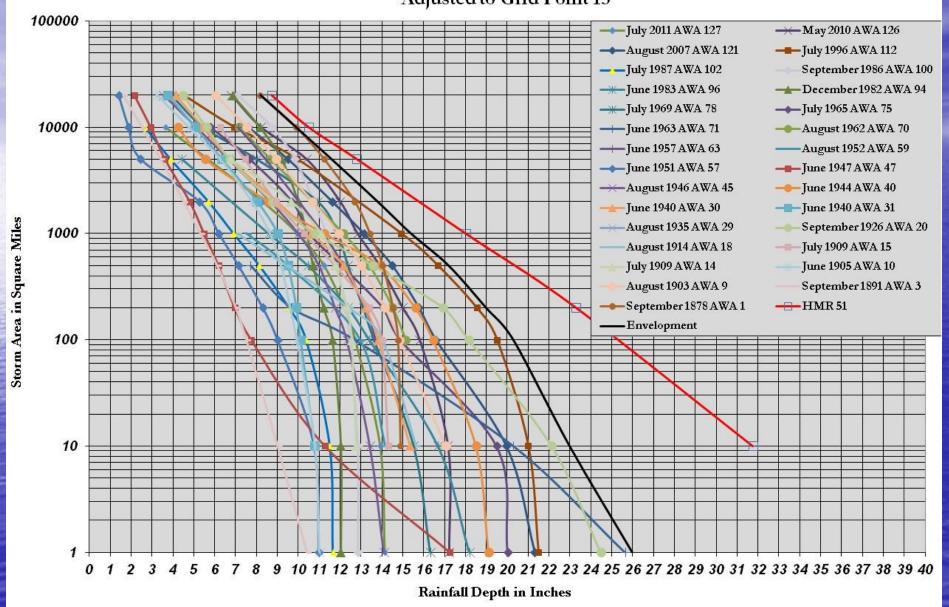
⊐Miles

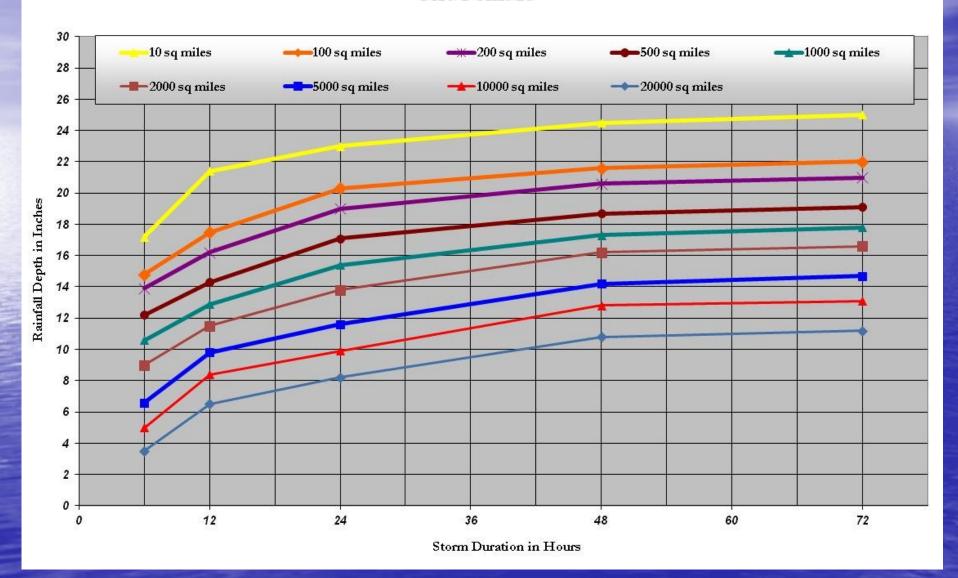
500

80°W

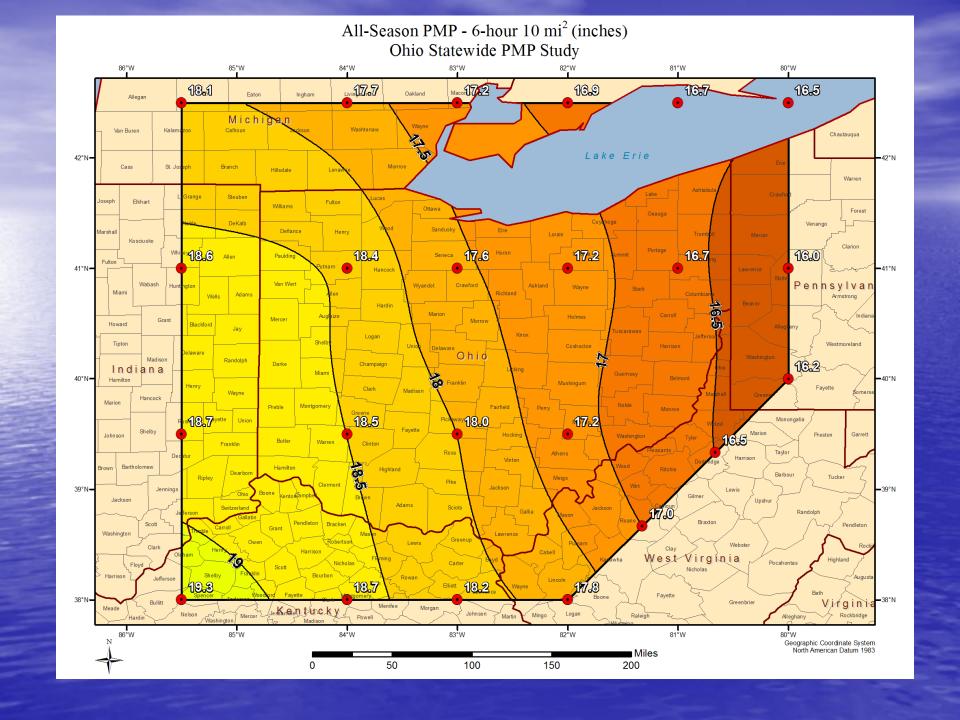
Coordinate System: UTM Zone 16 N North American Datum 1983

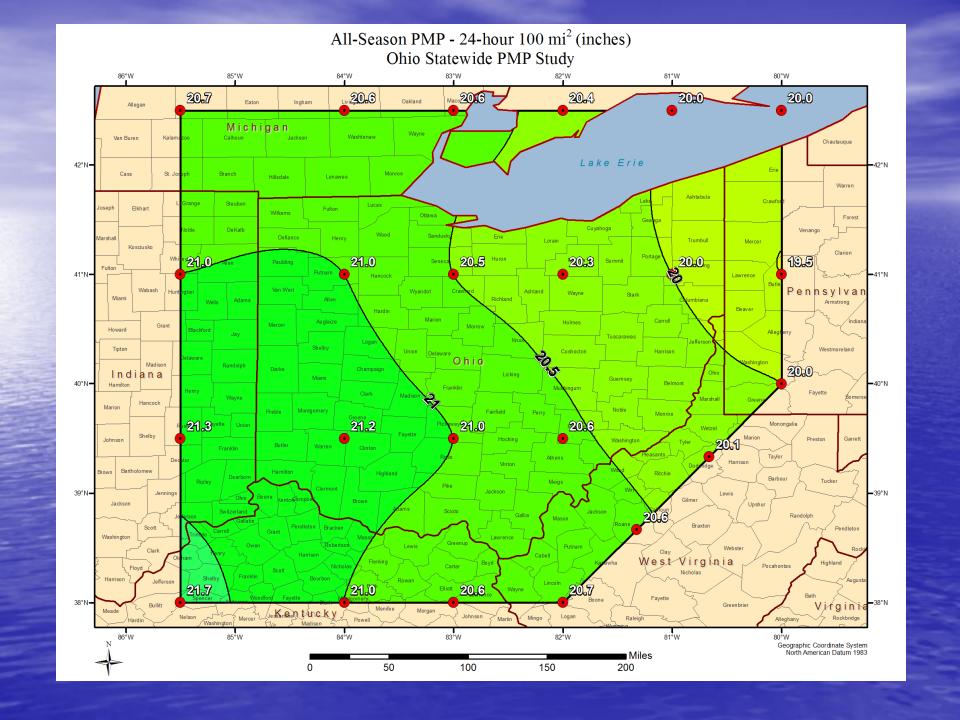

- Major Tasks for PMP Development:
 - Make the storms as big as physically possible
 - Maximize in-place
 - Transposition to Ohio
 - Adjust for elevation
 - Adjust for moisture

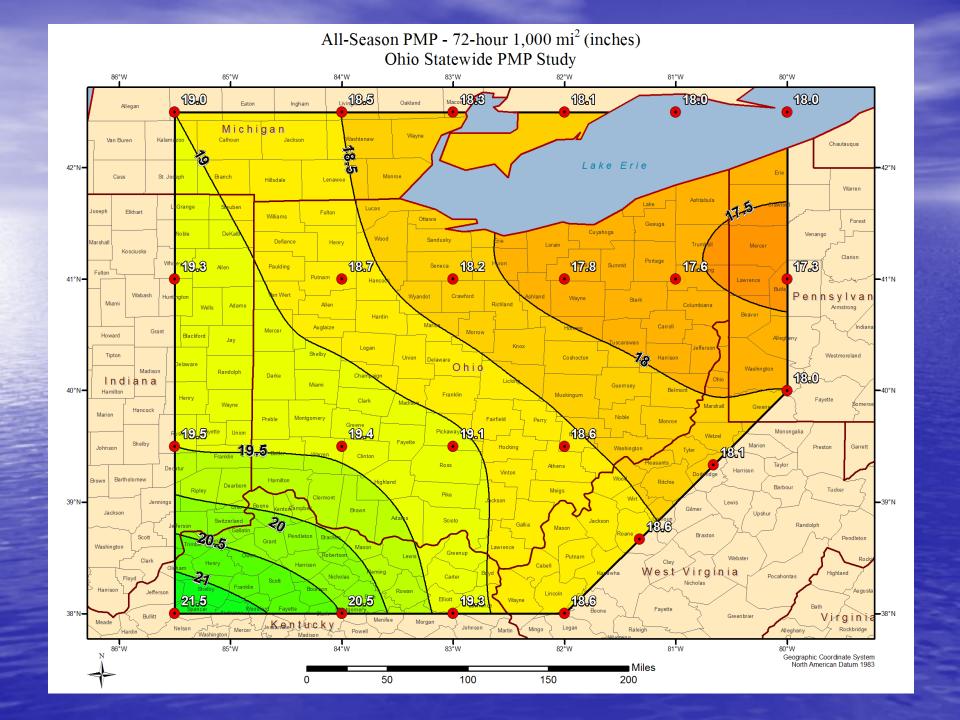

- Major Tasks for PMP Development:
 - Set of Grid Points to represent the region
 - Each storm transpositioned to each grid point as appropriate
 - Depth-Area, Depth Duration charts enveloped at each


Ohio Grid Point Locations

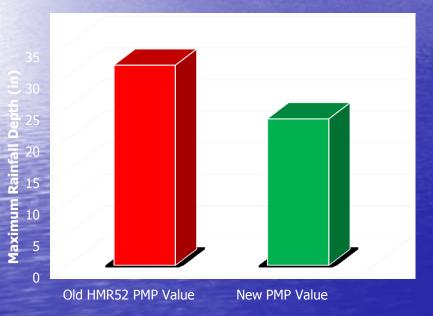
Twenty Four Hour Depth-Area Curves Adjusted to Grid Point 15




Depth-Duration Chart of Enveloped Storm Data Grid Point 15

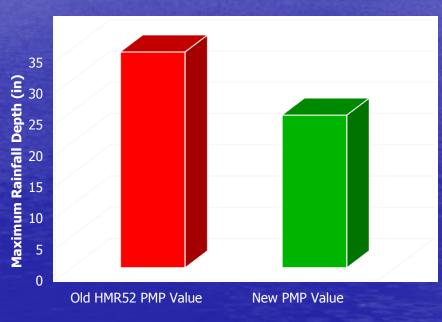


- Major Tasks for PMP Development:
 - Develop full DAD of PMP at each grid point
 - Produce PMP contours based on data
 - Manually smooth PMP contours
 - Ensure spatial and temporal continuity



Grid Point 15 Site-Specific PMP vs HMR 51							
	Area Size	6-Hour	12-Hour	24-Hour	48-Hour	72-Hour	
	10sqmi	26.0	29.6	31.8	34.9	36.7	
HMR 51 PMP	200sqmi	18.1	21.5	23.3	26.2	27.8	
Values at the Basin	1000sqmi	13.1	15.9	18.0	20.5	22.3	
Centroid in Inches	5000sqmi	7.8	10.9	12.8	15.3	17.0	
	10000sqmi	6.2	8.9	10.5	13.5	15.0	
	20000sqmi	4.3	7.0	8.7	11.3	12.5	
	Area Size	6-Hour	12-Hour	24-Hour	48-Hour	72-Hour	
	10sqmi	17.2	21.4	23.0	24.5	25.0	
	100sqmi	14.8	17.5	20.3	21.6	22.0	
Grid Point 15 PMP	200sqmi	13.9	16.2	19.0	20.6	21.0	
values in Inches	500sqmi	12.2	14.3	17.1	18.7	19.1	
	1000sqmi	10.6	12.9	15.4	17.3	17.8	
	2000sqmi	9.0	11.5	13.8	16.2	16.6	
	5000sqmi	6.6	9.8	11.6	14.2	14.7	
	10000sqmi	5.0	8.4	9.9	12.8	13.1	
	20000sqmi	3.5	6.5	8.2	10.8	11.2	
<u></u>							
	Area Size	6-Hour	12-Hour	24-Hour	48-Hour	72-Hour	
	10sqmi	34%	28%	28%	30%	32%	
% Reduction from	200sqmi	23%	25%	18%	21%	24%	
HMR 51	1000sqmi	19%	19%	14%	16%	20%	
	5000sqmi	16%	10%	9%	7%	13%	
	10000sqmi	19%	5%	6%	5%	13%	
	20000sqmi	18%	7%	6%	5%	10%	

- Final Report provides all data/details
- PMP data provided on a gridded basis in GIS


PMP 72-hr Rainfall Depth

Indian Lake 72-hr PMP Rainfall Depth


HMR 52 Max 6hr – 31.7" New PMP Max 6hr – 23.2"

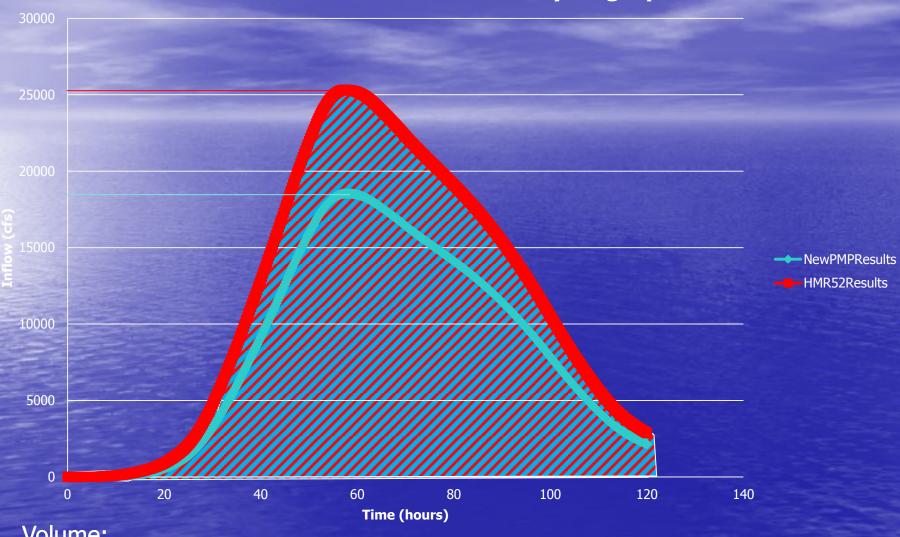
Lake Loramie 72-hr PMP Rainfall Depth

HMR 52 Max 6hr – 34.5" New PMP Max 6hr – 24.4"

HMR52: 149,570 ac-ft

Peak Inflow:

HMR52: 47,300 cfs


New PMP: 111,850 ac-ft

New PMP: 35,170 cfs

Difference: 37,720 ac-ft

Difference: 12,130 cfs

Lake Loramie Dam Inflow Hydrograph

Volume:

HMR52: 116,060 ac-ft

Peak Inflow:

HMR52: 25,320 cfs

New PMP: 84,880 ac-ft

New PMP: 18,540 cfs

Difference: 31,180 ac-ft

Difference: 6,780 cfs

Indian Lake Existing Spillway

Existing Spillway Length: 700 feet

New Spillway at 100-year Elevation Using HMR52 PMP: 2000 feet

New Spillway at 100-year Elevation Using New PMP: 800 feet

Lake Loramie Existing Spillway

Existing Spillway Length:

226 feet

New Spillway at 100-year Elevation Using HMR52 PMP:

1150 feet

New Spillway at 100-year Elevation Using New PMP:

610 feet

Cost Benefit ???

- Potential savings at Indian Lake and Lake Loramie is almost \$7,000,000.
- Cost of the study is less than \$500,000.
- 100+ other state owned dams.
- Thousands of private owned dams.
- YOU DO THE MATH!

OHIO STATEWIDE PMP STUDY QUESTIONS?

Hung Thai (ODNR – Division of Engineering)
Hung.Thai@dnr.state.oh.us

Bill Kappel (Applied Weather Associates) 719-488-4311

<u>BillKappel@AppliedWeatherAssociates.com</u> <u>www.AppliedWeatherAssociates.com</u>

Rob Kirkbride (Stantec Consulting)

Rob.Kirkbride@Stantec.com

